eCite Digital Repository

A conceptual framework for predicting temperate ecosystem sensitivity to human impacts on fire regimes

Citation

McWethy, DB and Higuera, PE and Whitlock, C and Veblen, TT and Bowman, DMJS and Cary, GJ and Haberle, SG and Keane, RE and Maxwell, BD and McGlone, MS and Perry, GLW and Wilmshurst, JM and Holz, A and Tepley, AJ, A conceptual framework for predicting temperate ecosystem sensitivity to human impacts on fire regimes, Global Ecology and Biogeography, 22, (8) pp. 900-912. ISSN 1466-822X (2013) [Refereed Article]

Copyright Statement

Copyright 2013 Blackwell Publishing Ltd

DOI: doi:10.1111/geb.12038

Abstract

Aim: The increased incidence of large fires around much of the world in recent decades raises questions about human and non-human drivers of fire and the likelihood of increased fire activity in the future. The purpose of this paper is to outline a conceptual framework for examining where human-set fires and feedbacks are likely to be most pronounced in temperate forests world-wide and to establish and test a methodology for evaluating this framework using palaeoecological records. Location: Tasmania, north-western USA, southern South America and New Zealand. Methods: We outline a conceptual framework for predicting the sensitivity of ecosystems to human impacts on fire regimes and then use a circum-Pacific comparison of existing historical reconstructions of fire, climate, human settlement and vegetation to evaluate this approach. Results: Previous research investigating important controls on fire activity shows that the sensitivity of temperate ecosystems to human-set fires is modulated by the frequency of natural fire occurrence, fuel moisture and fuel type and availability. Palaeoecological data from four temperate regions suggest that the effects of anthropogenic burning are greatest where fire is naturally rare, vegetation is poorly adapted to fire and fuel biomass is abundant and contiguous. Alternatively, where fire activity is naturally high and vegetation is well adapted to fire, evidence of human influence on fire and vegetation is less obvious. Main conclusions: Palaeofire records suggest that the most dynamic and persistent ecosystem transitions occur where human activities increase landscape flammability through fire-vegetation feedbacks. Rapid forest transitions in biomass-rich ecosystems such as New Zealand and areas of Tasmania and southern South America illustrate how landscapes experiencing few fires can shift past tipping points to become fire-prone landscapes with new alternative stable state communities. Comparisons of palaeoecological data from different regions with similar biophysical gradients but different human settlement histories can provide new opportunities for understanding ecosystem vulnerability to fire-climate-human interactions.

Item Details

Item Type:Refereed Article
Keywords:Biome sensitivity;climate;fire regimes;global change;human impacts;tipping points
Research Division:Environmental Sciences
Research Group:Ecological Applications
Research Field:Ecological Impacts of Climate Change
Objective Division:Environment
Objective Group:Flora, Fauna and Biodiversity
Objective Field:Flora, Fauna and Biodiversity at Regional or Larger Scales
Author:Bowman, DMJS (Professor David Bowman)
Author:Holz, A (Dr Andres Holz)
ID Code:82983
Year Published:2013
Web of Science® Times Cited:47
Deposited By:Plant Science
Deposited On:2013-02-26
Last Modified:2017-10-31
Downloads:0

Repository Staff Only: item control page