eCite Digital Repository

Influence of Ross Sea Bottom Water changes on the warming and freshening of the Antarctic Bottom Water in the Australian-Antarctic Basin

Citation

Shimada, K and Aoki, S and Ohshima, KI and Rintoul, SR, Influence of Ross Sea Bottom Water changes on the warming and freshening of the Antarctic Bottom Water in the Australian-Antarctic Basin, Ocean Science, 8 pp. 419-432. ISSN 1812-0792 (2012) [Refereed Article]


Preview
PDF
3Mb
  

Copyright Statement

Copyright the Author(s) 2012 (CC BY 3.0) CC Attribution 3.0 License.

DOI: doi:10.5194/os-8-419-2012

Abstract

The WOCE Hydrographic Program (WHP) and repeated hydrographic data were used to document overall property changes of the Antarctic Bottom Water (AABW) in the Australian-Antarctic Basin between the 1990s and 2000s. Strong cooling and freshening is observed on isopycnals for layers denser than ¦Ãn = 28.30. Changes in average salinity and potential temperature below this isopycnal correspond to basin-wide warming of 1300 ¡À 200 TW and freshening of 24 ¡À 3 Gt yr−1. While freshening can be explained by freshening of major source waters, i.e., the High Salinity Shelf Water (HSSW) of the Ross Sea and the dense shelf water formed in the Ad¨¦lie and George V Land (AGVL) region, extensive warming of the AABW cannot be explained by warming of the source waters. A possible cause of warming of the AABW is a decrease in supply of the Ross Sea Bottom Water (RSBW). Hydrographic profiles between the Drygalski Trough of the Western Ross Sea and 150¡ã E were analyzed in the context of a simple advective-diffusive model to assess the causes of the observed changes. The RSBW has also warmed by a larger amount than its source water (the HSSW). The model suggests that the warming of the RSBW observed between the 1970s and 2000s can be explained by a 21 ¡À 23% reduction in transport of the RSBW and an enhancement of the vertical diffusion of heat as a result of a 30 ¡À 7% weakening of the abyssal stratification. Freshening of the HSSW reduced the salinity and density stratification between the bottom water layer and overlying ambient water. Hence, freshening of the HSSW both directly freshened and indirectly warmed the RSBW by enhancing the vertical mixing. A simple box model suggest that changes in property and volume transport (decrease of 6.7% is assumed between the year 1995 and 2005) of the RSBW can explain 51 ¡À 6% of the warming and 84 ¡À 10% of the freshening observed in the AABW. These facts demonstrate that changes in both property and volume transport of the RSBW have contributed to the warming and freshening of the AABW in the Australian-Antarctic Basin.

Item Details

Item Type:Refereed Article
Keywords:Antarctica, Ross Sea, bottom water
Research Division:Earth Sciences
Research Group:Oceanography
Research Field:Physical oceanography
Objective Division:Environmental Management
Objective Group:Management of Antarctic and Southern Ocean environments
Objective Field:Antarctic and Southern Ocean oceanic processes
UTAS Author:Rintoul, SR (Dr Steve Rintoul)
ID Code:82660
Year Published:2012
Web of Science® Times Cited:36
Deposited By:CRC-Antarctic Climate & Ecosystems
Deposited On:2013-02-12
Last Modified:2017-11-01
Downloads:333 View Download Statistics

Repository Staff Only: item control page