eCite Digital Repository

Pea (Pisum sativum L.) in the genomic era


Smykal, P and Aubert, G and Burstin, J and Coyne, CJ and Ellis, NTH and Flavell, AJ and Ford, R and Hybl, M and Macas, J and Neumann, P and McPhee, KE and Redden, RJ and Rubiales, D and Weller, JL and Warkentin, TD, Pea (Pisum sativum L.) in the genomic era, Agronomy, 2, (2) pp. 74-115. ISSN 2073-4395 (2012) [Refereed Article]


Copyright Statement

Licensed under Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)

DOI: doi:10.3390/agronomy2020074


Pea (Pisum sativum L.) was the original model organism used in Mendel’s discovery (1866) of the laws of inheritance, making it the foundation of modern plant genetics. However, subsequent progress in pea genomics has lagged behind many other plant species. Although the size and repetitive nature of the pea genome has so far restricted its sequencing, comprehensive genomic and post genomic resources already exist. These include BAC libraries, several types of molecular marker sets, both transcriptome and proteome datasets and mutant populations for reverse genetics. The availability of the full genome sequences of three legume species has offered significant opportunities for genome wide comparison revealing synteny and co-linearity to pea. A combination of a candidate gene and colinearity approach has successfully led to the identification of genes underlying agronomically important traits including virus resistances and plant architecture. Some of this knowledge has already been applied to marker assisted selection (MAS) programs, increasing precision and shortening the breeding cycle. Yet, complete translation of marker discovery to pea breeding is still to be achieved. Molecular analysis of pea collections has shown that although substantial variation is present within the cultivated genepool, wild material offers the possibility to incorporate novel traits that may have been inadvertently eliminated. Association mapping analysis of diverse pea germplasm promises to identify genetic variation related to desirable agronomic traits, which are historically difficult to breed for in a traditional manner. The availability of high throughput ‘omics’ methodologies offers great promise for the development of novel, highly accurate selective breeding tools for improved pea genotypes that are sustainable under current and future climates and farming systems.

Item Details

Item Type:Refereed Article
Keywords:breeding, germplasm, genetic diversity, legume, pea
Research Division:Agricultural, Veterinary and Food Sciences
Research Group:Crop and pasture production
Research Field:Crop and pasture improvement (incl. selection and breeding)
Objective Division:Plant Production and Plant Primary Products
Objective Group:Grains and seeds
Objective Field:Grain legumes
UTAS Author:Weller, JL (Associate Professor Jim Weller)
ID Code:81304
Year Published:2012
Funding Support:Australian Research Council (DP0878723)
Deposited By:Plant Science
Deposited On:2012-11-28
Last Modified:2013-07-01
Downloads:574 View Download Statistics

Repository Staff Only: item control page