University of Tasmania
Browse

File(s) under permanent embargo

Inorganic monoliths in separation science: A review

journal contribution
posted on 2023-05-17, 14:32 authored by Walsh, Z, Brett PaullBrett Paull, Miroslav MackaMiroslav Macka
The practical application of rigid, macro-porous organic polymer and silica based monolithic stationary phases as separation media has been described in the literature since 1992 and 1996, respectively. Today these materials are extensively used in chromatography and electrochromatography and several detailed reviews appear annually describing these materials, their synthesis and application. To compliment these publications, this review focuses upon the less commonly utilised materials for monolith synthesis, both those that have already been applied within separation science, and those that have found applications elsewhere, such as catalysis and water filtration, but have the clear potential to be explored as novel stationary phases in the near future. For the purpose of the review monoliths formed from these various alternative materials will be termed 'Exotic Monoliths', as these new substrates in many cases have only just begun to be explored for chromatographic separations, and in many instances have unusual and highly selective surface chemistries, which are attractive in terms of broadening the choice of monolithic materials for separation science. An extensive range of monolithic materials based on the following elements and their compounds (mostly oxides) are covered: Zr, Ti, Al, Hf, C, Au, Ag, Ce, Ge and hydroxyapatite, together with their relevant properties, methods of synthesis, and current and potential applications in separation science.

History

Publication title

Analytica Chimica Acta

Volume

750

Pagination

28-47

ISSN

0003-2670

Department/School

School of Natural Sciences

Publisher

Elsevier Science Bv

Place of publication

Po Box 211, Amsterdam, Netherlands, 1000 Ae

Rights statement

Copyright 2012 Elsevier B.V.

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the chemical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC