eCite Digital Repository

High synteny and colinearity among Eucalyptus genomes revealed by high-density comparative genetic mapping

Citation

Hudson, CJ and Kullan, ARK and Freeman, JS and Faria, DA and Grattapaglia, D and Kilian, A and Myburg, AA and Potts, BM and Vaillancourt, RE, High synteny and colinearity among Eucalyptus genomes revealed by high-density comparative genetic mapping, Tree Genetics & Genomes, 8, (2) pp. 339-352. ISSN 1614-2942 (2012) [Refereed Article]

Copyright Statement

Copyright 2011 Springer-Verlag

DOI: doi:10.1007/s11295-011-0444-9

Abstract

Understanding genome differentiation is important to compare and transfer genomic information between taxa, such as from model to non-model organisms. Comparative genetic mapping can be used to assess genome differentiation by identifying similarities and differences in chromosome organization. Following release of the assembled Eucalyptus grandis genome sequence (January 2011; http://www.phyto zome.net/), a better understanding of genome differentiation between E. grandis and other commercially important species belonging to the subgenus Symphyomyrtus is required. In this study, comparative genetic mapping analyses were conducted between E. grandis, Eucalyptus urophylla, and Eucalyptus globulus using high-density linkage maps constructed from Diversity Array Technology and microsatellite molecular markers. There were 236–393 common markers between maps, providing the highest resolution yet achieved for comparative mapping in Eucalyptus. In two intra-section comparisons (section Maidenaria– E. globulus and section Latoangulatae–E. grandis vs. E. urophylla), ∼1% of common markers were nonsyntenic and within chromosomes 4.7–6.8% of markers were non-colinear. Consistent with increasing taxonomic distance, lower synteny (6.6% non-syntenic markers) was observed in an inter-section comparison between E. globulus and E. grandis×E. urophylla consensus linkage maps. Two small chromosomal translocations or duplications were identified in this comparison representing possible genomic differences between E. globulus and section Latoangulatae species. Despite these differences, the overall high level of synteny and colinearity observed between section Maidenaria– Latoangulatae suggests that the genomes of these species are highly conserved indicating that sequence information from the E. grandis genome will be highly transferable to related Symphyomyrtus species.

Item Details

Item Type:Refereed Article
Keywords:genomic, eucalypt, comparative mapping
Research Division:Biological Sciences
Research Group:Genetics
Research Field:Population, Ecological and Evolutionary Genetics
Objective Division:Plant Production and Plant Primary Products
Objective Group:Forestry
Objective Field:Hardwood Plantations
Author:Hudson, CJ (Mr Corey Hudson)
Author:Freeman, JS (Dr Jules Freeman)
Author:Potts, BM (Professor Brad Potts)
Author:Vaillancourt, RE (Professor Rene Vaillancourt)
ID Code:80169
Year Published:2012
Funding Support:Australian Research Council (DP110101621)
Web of Science® Times Cited:28
Deposited By:Plant Science
Deposited On:2012-10-24
Last Modified:2013-05-13
Downloads:0

Repository Staff Only: item control page