eCite Digital Repository

Transcriptomic Profiling of Astrocytes Treated With the Rho Kinase Inhibitor Fasudil Reveals Cytoskeletal and Pro-Survival Responses


Lau, CL and Perreau, VM and Chen, MJ and Cate, HS and Merlo, D and Cheung, NS and O'Shea, RD and Beart, PM, Transcriptomic Profiling of Astrocytes Treated With the Rho Kinase Inhibitor Fasudil Reveals Cytoskeletal and Pro-Survival Responses, Journal of Cellular Physiology, 227, (3) pp. 1199-1211. ISSN 0021-9541 (2012) [Refereed Article]

Copyright Statement

Copyright 2011 Wiley Periodicals, Inc.

DOI: doi:10.1002/jcp.22838


Inhibitors of Rho kinase (ROCK) have potential for management of neurological disorders by inhibition of glial scarring. Since astrocytes play key roles in brain physiology and pathology, we determined changes in the astrocytic transcriptome produced by the ROCK inhibitor Fasudil to obtain mechanistic insights into its beneficial action during brain injury. Cultured murine astrocytes were treated with Fasudil (100 ÁM) and morphological analyses revealed rapid stellation by 1 h and time-dependent (2-24 h) dissipation of F-actin-labelled stress fibres. Microarray analyses were performed on RNA and the time-course of global gene profiling (2, 6, 12 and 24 h) provided a comprehensive description of transcriptomic changes. Hierarchical clustering of differentially expressed genes and analysis for over-represented gene ontology groups using the DAVID database focused attention on Fasudil-induced changes to major biological processes regulating cellular shape and motility (actin cytoskeleton, axon guidance, transforming growth factor-β (TGF&beta) signalling and tight junctions). Bioinformatic analyses of transcriptomic changes revealed how these biological processes contributed to changes in astrocytic motility and cytoskeletal reorganisation. Here genes associated with extracellular matrix were also involved, but unexpected was a subset of alterations (EAAT2, BDNF, anti-oxidant species, metabolic and signalling genes) indicative of adoption by astrocytes of a pro-survival phenotype. Expression profiles of key changes with Fasudil and another ROCK inhibitor Y27632 were validated by real-time PCR. Although effects of ROCK inhibition have been considered to be primarily cytoskeletal via reduction of glial scarring, we demonstrate additional advantageous actions likely to contribute to their ameliorative actions in brain injury.

Item Details

Item Type:Refereed Article
Research Division:Biomedical and Clinical Sciences
Research Group:Neurosciences
Research Field:Cellular nervous system
Objective Division:Health
Objective Group:Clinical health
Objective Field:Clinical health not elsewhere classified
UTAS Author:Chen, MJ (Ms Minghui Chen)
UTAS Author:Cheung, NS (Dr Nam Cheung)
ID Code:80036
Year Published:2012
Web of Science® Times Cited:42
Deposited By:Menzies Institute for Medical Research
Deposited On:2012-10-17
Last Modified:2013-04-17

Repository Staff Only: item control page