eCite Digital Repository

High-resolution projections of surface water availability for Tasmania, Australia


Bennett, JC and Ling, FLN and Post, DA and Grose, MR and Corney, SP and Graham, B and Holz, GK and Katzfey, JJ and Bindoff, NL, High-resolution projections of surface water availability for Tasmania, Australia, Hydrology and Earth System Sciences, 16, (5) pp. 1287-1303. ISSN 1027-5606 (2012) [Refereed Article]


Copyright Statement

Licensed under Creative Commons Attribution 3.0 Unported (CC BY 3.0)

DOI: doi:10.5194/hess-16-1287-2012


Changes to streamflows caused by climate change may have major impacts on the management of water for hydro-electricity generation and agriculture in Tasmania, Australia. We describe changes to Tasmanian surface water availability from 1961-1990 to 2070-2099 using high-resolution simulations. Six fine-scale (~10 km2) simulations of daily rainfall and potential evapotranspiration are generated with the CSIRO Conformal Cubic Atmospheric Model (CCAM), a variable-resolution regional climate model (RCM). These variables are bias-corrected with quantile mapping and used as direct inputs to the hydrological models AWBM, IHACRES, Sacramento, SIMHYD and SMAR-G to project streamflows.

The performance of the hydrological models is assessed against 86 streamflow gauges across Tasmania. The SIMHYD model is the least biased (median bias = -3%) while IHACRES has the largest bias (median bias = -22%). We find the hydrological models that best simulate observed streamflows produce similar streamflow projections.

There is much greater variation in projections between RCM simulations than between hydrological models. Marked decreases of up to 30% are projected for annual runoff in central Tasmania, while runoff is generally projected to increase in the east. Daily streamflow variability is projected to increase for most of Tasmania, consistent with increases in rainfall intensity. Inter-annual variability of streamflows is projected to increase across most of Tasmania.

This is the first major Australian study to use high-resolution bias-corrected rainfall and potential evapotranspiration projections as direct inputs to hydrological models. Our study shows that these simulations are capable of producing realistic streamflows, allowing for increased confidence in assessing future changes to surface water variability.

Item Details

Item Type:Refereed Article
Keywords:high-resolution projections, surface water
Research Division:Earth Sciences
Research Group:Climate change science
Research Field:Climate change processes
Objective Division:Environmental Policy, Climate Change and Natural Hazards
Objective Group:Understanding climate change
Objective Field:Climate change models
UTAS Author:Bennett, JC (Mr James Bennett)
UTAS Author:Grose, MR (Dr Michael Grose)
UTAS Author:Corney, SP (Dr Stuart Corney)
UTAS Author:Holz, GK (Dr Greg Holz)
UTAS Author:Bindoff, NL (Professor Nathan Bindoff)
ID Code:79567
Year Published:2012
Web of Science® Times Cited:24
Deposited By:CRC-Antarctic Climate & Ecosystems
Deposited On:2012-09-19
Last Modified:2017-11-06
Downloads:603 View Download Statistics

Repository Staff Only: item control page