eCite Digital Repository

Regions of rapid sea ice change: An inter-hemispheric seasonal comparison

Citation

Stammerjohn, S and Massom, R and Rind, D and Martinson, D, Regions of rapid sea ice change: An inter-hemispheric seasonal comparison, Geophysical Research Letters, 39, (6) Article L06501. ISSN 0094-8276 (2012) [Refereed Article]


Preview
PDF
Restricted - Request a copy
1Mb
  

Copyright Statement

Copyright 2012 American Geophysical Union

DOI: doi:10.1029/2012GL050874

Abstract

This bi-polar analysis resolves ice edge changes on space/time scales relevant for investigating seasonal iceocean feedbacks and focuses on spatio-temporal changes in the timing of annual sea ice retreat and advance over 1979/ 80 to 2010/11. Where Arctic sea ice decrease is fastest, the sea ice retreat is now nearly 2 months earlier and subsequent advance more than 1 month later (compared to 1979/80), resulting in a 3-month longer summer ice-free season. In the Antarctic Peninsula and Bellingshausen Sea region, sea ice retreat is more than 1 month earlier and advance 2 months later, resulting in a more than 3-month longer summer icefree season. In contrast, in the western Ross Sea (Antarctica) region, sea ice retreat and advance are more than 1 month later and earlier respectively, resulting in a more than 2 month shorter summer ice-free season. Regardless of trend magnitude or direction, and at latitudes mostly poleward of 70° (N/S), there is strong correspondence between anomalies in the timings of sea ice retreat and subsequent advance, but little correspondence between advance and subsequent retreat. These results support a strong ocean thermal feedback in autumn in response to changes in spring sea ice retreat. Further, model calculations suggest different net ocean heat changes in the Arctic versus Antarctic where autumn sea ice advance is 1 versus 2 months later. Ocean-atmosphere changes, particularly in boreal spring and austral autumn (i.e., during ~March-May), are discussed and compared, as well as possible inter-hemispheric climate connections.

Item Details

Item Type:Refereed Article
Keywords:Antarctic, Arctic, sea ice, climate change, variability
Research Division:Earth Sciences
Research Group:Physical Geography and Environmental Geoscience
Research Field:Glaciology
Objective Division:Expanding Knowledge
Objective Group:Expanding Knowledge
Objective Field:Expanding Knowledge in the Earth Sciences
Author:Massom, R (Dr Robert Massom)
ID Code:78806
Year Published:2012
Web of Science® Times Cited:148
Deposited By:CRC-Antarctic Climate & Ecosystems
Deposited On:2012-07-27
Last Modified:2013-04-26
Downloads:5 View Download Statistics

Repository Staff Only: item control page