University of Tasmania
Browse

File(s) under permanent embargo

Online sample pre-concentration via dynamic pH junction in capillary and microchip electrophoresis

journal contribution
posted on 2023-05-17, 11:11 authored by Kazarian, AA, Emily HilderEmily Hilder, Michael BreadmoreMichael Breadmore
Various analytical techniques have been developed over the years to analyse a large diversity of biomolecules with a constant push towards ultra-sensitive detection. CE is at the forefront of the most powerful analytical tools available to date when considering its superior efficiency and resolution; however, the technique suffers from poor sensitivity as a result of the short path length at the detection site and small injection volumes (typically o1% capillary length). One of the approaches to abate the inherent problem is to employ clever chemistry using sample focusing techniques whereby a large sample plug can be injected, preconcentrated and separated, producing excellent sensitivity and efficiency at the detector. This particular review will focus on the use of dynamic pH junction as a means of improving sensitivity in CE and focuses on the use of a change in analyte ionisation due to different pHs between the sample and electrolyte. The review provides a fundamental discussion of the mechanisms, buffer and sample conditions required to concentrate various analytes and a comprehensive list of published works in tabular format for easy identification of suitable conditions for new applications. The review further encompasses the use of dynamic pH junction in CE and its involvement in combination with other preconcentrations techniques to produce high sensitivity enhancements recorded between the years 1990–2010.

History

Publication title

Journal of Separation Science

Volume

34

Issue

20

Pagination

2800-2821

ISSN

1615-9314

Department/School

School of Natural Sciences

Publisher

Wiley-V C H Verlag Gmbh

Place of publication

Po Box 10 11 61, Weinheim, Germany, D-69451

Rights statement

Copyright 2011 WILEY-VCH Verlag GmbH & Co. KGaA

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the chemical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC