University of Tasmania
Browse

File(s) under permanent embargo

Minor and trace elements in bornite and associated Cu-(Fe)-sulfides: a LA-ICP-MS study

journal contribution
posted on 2023-05-17, 09:36 authored by Cook, NJ, Ciobanu, CL, Leonid Danyushevsky, Gilbert, S
In situ laser ablation inductively-coupled mass spectroscopy (LA-ICP-MS) has been used to provide a baseline dataset on the minor element contents in hypogene bornite and accompanying Cu-sulfides from 12 deposits with emphasis on syn-metamorphic Cu–vein systems in Norway, and skarn, porphyry and epithermal systems in SE Europe. Bornite contains significant concentrations of both Ag and Bi, especially in the vein and skarn deposits studied and has the potential to be a major Ag-carrier in such ores. Concentrations of up to >1 wt.% of both elements are documented. Measured concentrations appear to be independent of whether discrete Ag- and/or Bi-minerals are present within the analyzed sulfide. Where bornite and chalcocite (or mixtures of Cu-sulfides) coexist, Ag is preferentially partitioned into chalcocite over co-existing bornite and Bi is partitioned into the bornite. Bornite is a relatively poor host for Au, which mimics Ag by being typically richer in coexisting chalcocite. Most anomalous Au concentrations in bornite can be readily tracked to micron- and submicron-scale inclusions, but bornite and chalcocite containing up to 3 and 28 ppm Au in solid solution can be documented. Selenium and Te concentrations in bornite may be as high as several thousand ppm and correlate with the abundance of selenides and tellurides within the sample. Selenium distributions show some promise as a vector in exploration, offering the possibility to track a fluid source. Bornite and chalcocite are poor hosts for a range of other elements such as Co, Ni, Ga and Ge, etc. which have been reported to be commonly substituted within sulfides. Hypogene bornite and chalcocite may have significantly different trace element geochemical signatures from secondary (supergene) bornite.

History

Publication title

Geochimica Et Cosmochimica Acta

Volume

75

Issue

21

Pagination

6473-6496

ISSN

0016-7037

Department/School

School of Natural Sciences

Publisher

Pergamon-Elsevier Science Ltd

Place of publication

The Boulevard, Langford Lane, Kidlington, Oxford, England, Ox5 1Gb

Rights statement

The definitive version is available at http://www.sciencedirect.com

Repository Status

  • Restricted

Socio-economic Objectives

Copper ore exploration

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC