University of Tasmania
Browse

File(s) under permanent embargo

Thermal gradient and timing of high-T--low-P metamorphism in the Wongwibinda Metamorphic Complex, Southern New England Orogen, Australia

journal contribution
posted on 2023-05-17, 09:36 authored by Craven, SJ, Daczko, NR, Jacqueline HalpinJacqueline Halpin
The Wongwibinda Metamorphic Complex (WMC) is a high-temperature, low-pressure (HTLP) belt in the southern New England Orogen. It is characterized by a high metamorphic field gradient exposed in variably metamorphosed siliceous turbidites. The Abroi Granodiorite and the Rockvale and Tobermory adamellites, S-type granitoids of the Hillgrove Plutonic Suite, intrude the metaturbidites. Six samples of metaturbidite were studied from an ∼3 km long field traverse. Integrated petrography, mineral chemistry, and mineral equilibria modelling indicate a peak metamorphic temperature of 350–450 °C in the lowest grade rocks and ∼660 °C in the highest-grade rocks. Maximum pressure does not exceed 3.5 kbar anywhere, implying a maximum depth of 12 km and indicating an average vertical gradient of at least 55 °C km−1, though our calculations suggest this is not linear. Metamorphic isograds show no apparent relationship with distance to the exposed margins of the Hillgrove Suite granitoids. Electron microprobe U–Th–Pb monazite data indicate a date of 296.8 ± 1.5 Ma for the thermal peak of the HTLP metamorphism. Laser ablation inductively coupled plasma mass spectrometry indicates a zircon U–Pb crystallization age of 290.5 ± 1.6 Ma for the Abroi Granodiorite, confirming that the pluton post-dates the peak HTLP metamorphism. Consequently, magmatic advective heat transfer from depth via emplacement of a large volume of granitoid is unlikely to be the key local driver of the high-grade metamorphism. It is concluded that published evidence of an extensional geodynamic setting around the Carboniferous–Permian boundary supports conductive heat transfer as the key driver of HTLP metamorphism for the WMC. It is not possible to exclude magmatic advective heat transfer via emplacement of mantle derived basaltic magmas in the deeper crust.

History

Publication title

Journal of Metamorphic Geology

Volume

30

Pagination

3-20

ISSN

0263-4929

Department/School

School of Natural Sciences

Publisher

Blackwell Publishing Ltd

Place of publication

9600 Garsington Rd, Oxford, England, Oxon, Ox4 2Dg

Rights statement

The definitive published version is available online at: http://www3.interscience.wiley.com/

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the earth sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC