eCite Digital Repository

Exploration tools for linked porphyry and epithermal deposits: example from the Mankayan intrusion-centered Cu-Au District, Luzon, Philippines

Citation

Chang, Z and Hedenquist, JW and White, NC and Cooke, DR and Roach, M and Deyell, CL and Garcia Jr, J and Gemmell, JB and McKnight, S and Cuison, AL, Exploration tools for linked porphyry and epithermal deposits: example from the Mankayan intrusion-centered Cu-Au District, Luzon, Philippines, Economic Geology and The Bulletin of The Society of Economic Geologists, 106, (8) pp. 1365-1398. ISSN 0361-0128 (2011) [Refereed Article]

Copyright Statement

2011 Society of Economic Geologists, Inc. Society of Economic Geologists, 7811 Shaffer Parkway, Littleton, CO 80127, USA

DOI: doi:10.2113/econgeo.106.8.1365

Abstract

The Mankayan mineral district of northern Luzon, Philippines, hosts several significant ore deposits and prospects of various types within an area of ~25 km2, including the Far Southeast porphyry Cu-Au deposit, the Lepanto high sulfidation epithermal Cu-Au deposit, the Victoria intermediate sulfidation epithermal Au-Ag vein deposit, the Teresa epithermal Au-Ag vein deposit, the Guinaoang porphyry Cu-Au deposit, and the Buaki and Palidan porphyry Cu-Au prospects, all having formed in a period of about 2 m.y., from ~3 Ma. The geologic units include (1) a basement composed of Late Cretaceous to middle Miocene metavolcanic rocks and volcaniclastic rocks; (2) the Miocene 12 to 13 Ma tonalitic Bagon intrusive complex; (3) the Pliocene, ~2.2 to 1.8 Ma, Imbanguila dacite porphyry and pyroclastic rocks; and (4) postmineralization cover rocks, including the ~1.2 to 1.0 Ma Bato dacite porphyry and pyroclastic rocks and the ~0.02 Ma Lapangan tuff.

Extensive advanced argillic alteration crops out for ~7 km along the unconformity between the basement rocks and the Imbanguila dacite formation and consists of quartz-alunite pyrophyllite or diaspore, with local zones of silicic alteration and a halo of dickite kaolinite. The alteration and its subhorizontal geometry indicate that it is a lithocap or coalesced lithocaps. The northwest-striking portion is ~4 km long and hosts the Lepanto enargite Au ore deposit, also controlled by the Lepanto fault. The Lepanto epithermal deposit is related to the underlying Far Southeast porphyry; the quartz-alunite alteration halo of Lepanto is contemporaneous with the ~1.4 Ma potassic alteration of the porphyry. There are also silicic-advanced argillic alteration patches ~600 m above the Far Southeast orebody at the present surface; these are interpreted to be perched alteration. There is no systematic mineralogical or textural zoning in the Lepanto lithocap that indicates direction to the intrusive source. Most surface samples of the lithocap contain less than 50 ppb Au, despite many being less than a few hundred meters from underground Cu-Au ore.

This study found that several characteristics of the Lepanto lithocap change systematically with distance from the causative intrusion: The alunite absorption peak at ~1,480 nm in the short wavelength infrared (SWIR) spectrum shifts to higher wavelengths where the sample is closer to the intrusive center, due to higher Na and lower K content in the alunite; published experimental studies indicate that high Na/(Na + K) is related to higher formation temperature. High Ca alunite, including huangite, also occurs at locations proximal to the intrusive center. Alunite mineral composition analyzed by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) indicates that the Pb content decreases toward the intrusive center, whereas Sr, La, Sr/Pb, and La/Pb increase markedly. Whole-rock compositions, using only nonmineralized (taken as Cu <0.1wt % and Au <0.1 ppm) and alunite-bearing samples, show that Pb and Ag/Au, plus Hg and Ag, decrease toward the intrusive center, and Sr/Pb and La/Pb ratios increase. Normalizing whole-rock Pb to the (Na + K) molal content produces a proxy for the alunite mineral composition, and this ratio provides the same indications as the LA-ICP-MS analyses of alunite. The concealed Victoria epithermal veins consist of intermediate sulfidation mineralization on the southwest flank of the porphyry. The veins are not exposed, but their presence at depth is indicated by subtle alteration (illite or interstratified illite and/or smectite or smectite + pyrite) and geochemical (As, Se) anomalies at the surface. The anomalies are strongly dependent on erosion level; no anomalies were found where the surface is >~350 m above the upper extent of the veins. An airborne geophysics survey indicates that the Far Southeast orebody is associated with a wide zone of demagnetization due to extensive magnetite-destructive phyllic alteration. Such low magnetic anomalies on the margin of a large lithocap elsewhere may deserve attention. The directional indicators and mineralization signatures found in this study have the potential to indicate direction to the intrusive center during exploration of similar porphyryepithermal districts.

Item Details

Item Type:Refereed Article
Keywords:epithermal deposits, porphyry deposits, exploration, Philippines
Research Division:Earth Sciences
Research Group:Geology
Research Field:Ore Deposit Petrology
Objective Division:Mineral Resources (excl. Energy Resources)
Objective Group:Mineral Exploration
Objective Field:Copper Ore Exploration
Author:Chang, Z (Dr Zhaoshan Chang)
Author:White, NC (Dr Noel White)
Author:Cooke, DR (Professor David Cooke)
Author:Roach, M (Dr Michael Roach)
Author:Deyell, CL (Dr Cari Deyell)
Author:Gemmell, JB (Professor Bruce Gemmell)
Author:Cuison, AL (Ms Ana Cuison)
ID Code:74788
Year Published:2011
Web of Science® Times Cited:43
Deposited By:Centre for Ore Deposit Research - CODES CoE
Deposited On:2011-12-13
Last Modified:2014-04-30
Downloads:8 View Download Statistics

Repository Staff Only: item control page