University of Tasmania
Browse

File(s) not publicly available

A genetic similarity rule determines arthropod community structure

journal contribution
posted on 2023-05-17, 08:35 authored by Bangert, RK, Turek, RJ, Rehill, B, Wimp, GM, Schweitzer, J, Allan, GJ, Bailey, J, Martinsen, GD, Keim, P, Lindroth, RL, Whitham, TG
We define a genetic similarity rule that predicts how genetic variation in a dominant plant affects the structure of an arthropod community. This rule applies to hybridizing cottonwood species where plant genetic variation determines plant-animal interactions and structures a dependent community of leaf-modifying arthropods. Because the associated arthropod community is expected to respond to important plant traits, we also tested whether plant chemical composition is one potential intermediate link between plant genes and arthropod community composition. Two lines of evidence support our genetic similarity rule. First, in a common garden experiment we found that trees with similar genetic compositions had similar chemical compositions and similar arthropod compositions. Second, in a wild population, we found a similar relationship between genetic similarity in cottonwoods and the dependent arthropod community. Field data demonstrate that the relationship between genes and arthropods was also significant when the hybrids were analysed alone, i.e. the pattern is not dependent upon the inclusion of both parental species. Because plant-animal interactions and natural hybridization are common to diverse plant taxa, we suggest that a genetic similarity rule is potentially applicable, and may be extended, to other systems and ecological processes. For example, plants with similar genetic compositions may exhibit similar litter decomposition rates. A corollary to this genetic similarity rule predicts that in systems with low plant genetic variability, the environment will be a stronger factor structuring the dependent community. Our findings argue that the genetic composition of a dominant plant can structure higher order ecological processes, thus placing community and ecosystem ecology within a genetic and evolutionary framework. A genetic similarity rule also has important conservation implications because the loss of genetic diversity in one species, especially dominant or keystone species that define many communities, may cascade to negatively affect the rest of the dependent community. © 2006 Blackwell Publishing Ltd.

History

Publication title

Molecular Ecology

Volume

15

Issue

5

Pagination

1379-1391

ISSN

0962-1083

Department/School

School of Natural Sciences

Publisher

Blackwell Publishing Ltd

Place of publication

9600 Garsington Rd, Oxford, England, Oxon, Ox4 2Dg

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the biological sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC