eCite Digital Repository

Type-III procollagen assembly in semi-intact cells: Chain association, nucleation and triple-helix folding do not require formation of inter-chain disulphide bonds but triple-helix nucleation does require hydroxylation

Citation

Bulleid, NJ and Wilson, RR and Lees, J, Type-III procollagen assembly in semi-intact cells: Chain association, nucleation and triple-helix folding do not require formation of inter-chain disulphide bonds but triple-helix nucleation does require hydroxylation, Biochemical Journal, 317 pp. 195-202. ISSN 0264-6021 (1996) [Refereed Article]

DOI: doi:10.1042/bj3170195

Abstract

Procollagen assembly is initiated within the endoplasmic reticulum by three alpha-chains associating via their C-propeptides (C-terminal propeptides). To study the requirements for the association of procollagen monomers at synthesis we have reconstituted the initial stages in the folding, assembly and modification of procollagen using semi-permeabilized cells. By translating a type-III procollagen "mini-gene' which lacks part of the triple-helical domain, we demonstrate that these cells efficiently carry out the assembly of hydroxylated, triple-helical, procollagen trimers and allow the identification of specific disulphide-bonded intermediates in the folding pathway. Mutant chains, which lack the ability to form inter-chain disulphide bonds within the C-propeptide, were still able to assemble within this system. Furthermore, characterization of the trimeric molecules formed suggested that inter-chain disulphide bonds had formed within the C-telopeptide (C-terminal telopeptide). However, when hydroxylation of prolyl and lysyl residues was inhibited no inter-chain disulphide bonds were formed in the C-telopeptide, indicating that hydroxylation is required for the initial nucleation of the triple-helical domain. Mutant chains which lacked the ability to form inter-chain disulphide bonds within the C-propeptide or the C-telopeptide could still assemble to form trimeric triple-helical molecules linked by inter-chain disulphide bonds within the N-propeptide (N-terminal propeptide). These results indicate that inter-chain disulphide bond formation within the C-propeptide or the C-telopeptide is not required for chain association and triple-helix formation.

Item Details

Item Type:Refereed Article
Research Division:Biological Sciences
Research Group:Biochemistry and Cell Biology
Research Field:Protein Trafficking
Objective Division:Expanding Knowledge
Objective Group:Expanding Knowledge
Objective Field:Expanding Knowledge in the Medical and Health Sciences
Author:Wilson, RR (Dr Richard Wilson)
ID Code:72433
Year Published:1996
Web of Science® Times Cited:58
Deposited By:Central Science Laboratory
Deposited On:2011-08-26
Last Modified:2011-09-27
Downloads:0

Repository Staff Only: item control page