University of Tasmania
Browse

File(s) not publicly available

Proteomics makes progress in cartilage and arthritis research

journal contribution
posted on 2023-05-17, 07:42 authored by Richard WilsonRichard Wilson, Whitelock, JM, Bateman, JF
Understanding biology at the systems level is a powerful method for discovery of previously unrecognized molecular pathways and mechanisms in human disease. The application of proteomics to arthritis research has lagged behind many other clinical targets, partly due to the unique biochemical properties of cartilage and associated biological fluids such as synovial fluid. In recent years, however, proteomic-based studies in cartilage and arthritis research have risen sharply and have started to make a significant impact on our understanding of joint disease, including the discovery of new and promising biomarkers of cartilage degeneration, a hallmark of arthritis. In this review we will make the case for the ongoing proteomic analysis of cartilage and other tissues affected by joint disease, overview some of the core proteomic techniques and discuss how the challenge of cartilage proteomics has been met through technical innovation. The major outcomes and information obtained from recent proteomic analysis of synovial fluid, cartilage and chondrocytes will also be described. In addition, we present some novel insights into post-translational regulation of cartilage proteins, through proteomic identification of proteolytic fragments in mouse cartilage extracts and explant culture media. We conclude with our prediction of how emerging proteomic technologies that have yet to be applied in arthritis research are likely to contribute further important information.

History

Publication title

Matrix Biology: Clinical and Experimental

Volume

28

Pagination

121-128

ISSN

0945-053X

Publisher

Elsevier Science Bv

Place of publication

Po Box 211, Amsterdam, Netherlands, 1000 Ae

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the health sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC