eCite Digital Repository

Using scanning contactless conductivity to optimise photografting procedures and capacity in the production of polymer ion-exchange monoliths


Gillespie, E and Connolly, D and Paull, B, Using scanning contactless conductivity to optimise photografting procedures and capacity in the production of polymer ion-exchange monoliths, The Analyst, 134, (7) pp. 1314-1321. ISSN 0003-2654 (2009) [Refereed Article]

DOI: doi:10.1039/b901300h


Capacitively coupled contactless conductivity detection (C4D) is utilised as a simple, rapid and non-invasive technique for the quantitative evaluation of the ion-exchange capacity of charged polymer monoliths in capillary format. A charged monomer, 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) was photografted onto a 100 m i.d. butyl methacrylate-co- ethylenedimethacrylate monolith in a number of discrete 10 mm zones. By varying the energy dose (J/cm2) during grafting of each zone, the grafting density and thus ion-exchange capacity could be precisely controlled. Ion-exchange capacity could be correlated with energy dose by measuring the conductive response of each grafted region using scanning C4D techniques. Repeatability of the scanning C4D method was excellent with % RSD values of 0.7% and 2.4% obtained for three replicate scans of the ungrafted and grafted regions of a single monolith, respectively. Repeatability of the photografting process on separate monoliths was also examined by comparison of C4D profiles. The spatial accuracy of photografting was probed using scanning C4D which could measure the conductive response of the monolith at measurement intervals as low as 1 mm along its entire length. Scanning C4D was also used for the real time visualisation of the equilibration of grafted zones to permit the optimisation of monolith washing procedures. Finally, scanning C4D was applied to the measurement of the ion-exchange capacity of butyl methacrylate-co-AMPS-co- ethylenedimethacrylate copolymers with a direct correlation between monolith conductive response and concentration of charged monomer in the polymerisation mixture. The longitudinal homogeneity of charge along the monolith was 0.3% RSD, demonstrating that the charged functional monomer was evenly dispersed throughout the bulk of the monolith. Ion-exchange capacity was cross validated chromatographically using breakthrough studies and found to closely correlate to within 1% of the measurements made by scanning C4D. © 2009 The Royal Society of Chemistry.

Item Details

Item Type:Refereed Article
Research Division:Chemical Sciences
Research Group:Analytical chemistry
Research Field:Separation science
Objective Division:Expanding Knowledge
Objective Group:Expanding knowledge
Objective Field:Expanding knowledge in the chemical sciences
UTAS Author:Paull, B (Professor Brett Paull)
ID Code:72023
Year Published:2009
Web of Science® Times Cited:19
Deposited By:Research Division
Deposited On:2011-08-18
Last Modified:2014-12-01

Repository Staff Only: item control page