eCite Digital Repository

Summertime boundary layer winds over the Darwin-Hatherton glacial system, Antarctica: observed features and numerical analysis


Zawar-Resa, P and George, SE and Storey, B and Lawson, W, Summertime boundary layer winds over the Darwin-Hatherton glacial system, Antarctica: observed features and numerical analysis, Antarctic Science, 22, (6) pp. 619-632. ISSN 0954-1020 (2010) [Refereed Article]

DOI: doi:10.1017/S0954102010000817


Three temporary Automatic Weather Stations measured summertime surface layer climate over the Darwin-Hatherton Glacial system. These data were used to test a Polar optimized Weather Research and Forecasting model (Polar-WRF) simulation for December as a case study. Observations show differences in hourly averaged solar and net all-wave radiation between white ice and blue ice areas (BIAs). Although the down-welling solar radiation is higher over the white ice region, the net all-wave energy is higher over the BIA. Derived albedo for each surface type confirms that the blue ice areas have lower albedo. Also, the hourly averaged temperatures are higher at lower elevation stations, creating a gradient towards the Ross Ice Shelf. Analysis shows that there is a diurnal oscillation in strength and intensity of the katabatic wind. The two lower stations register a distinct reversal of wind direction in the early afternoon due to intrusion of an anabatic circulation. Anabatic winds are not prevalent further up the Darwin Glacier. A high-resolution Polar-WRF simulation as a case study shows good agreement with observations. The December 2008 case study is characterized by a strong south-westerly katabatic wind over Hatherton, whereas the flow over Lower Darwin was diurnally reversing. Polar-WRF shows that the katabatic front advanced and retreated periodically between Hatherton and Lower Darwin.

Item Details

Item Type:Refereed Article
Research Division:Earth Sciences
Research Group:Atmospheric sciences
Research Field:Atmospheric sciences not elsewhere classified
Objective Division:Environmental Policy, Climate Change and Natural Hazards
Objective Group:Understanding climate change
Objective Field:Effects of climate change on Antarctic and sub-Antarctic environments (excl. social impacts)
UTAS Author:George, SE (Dr Steve George)
ID Code:71436
Year Published:2010
Web of Science® Times Cited:3
Deposited By:Research Division
Deposited On:2011-07-19
Last Modified:2011-07-19

Repository Staff Only: item control page