eCite Digital Repository

On the importance of hydrothermalism to the oceanic dissolved iron inventory


Tagliabue, A and Bopp, L and Dutay, J and Bowie, AR and Chever, F and Jean-Baptiste, P and Bucciarelli, E and Lannuzel, D and Remenyi, TA and Sarthou, G and Aumont, O and Gehlen, M and Jeandel, C, On the importance of hydrothermalism to the oceanic dissolved iron inventory, EOS Transactions, Ocean Sciences Meeting Supplement, 22-26 February 2010, Portland, Oregon, pp. Abstract CO14A-04. (2010) [Conference Extract]


Iron limits phytoplankton growth and the biological carbon pump in large areas of the world’s oceans, including the climatically important Southern Ocean. Studies attempting to address how changes in iron supply impact the global carbon cycle rely on global models of ocean circulation and biogeochemistry that typically include dust and continental margins as their predominant iron sources. However, recent observational studies have highlighted the potential importance of an additional iron source from deep-ocean hydrothermalism. In light of this, our prior understanding of the oceanic iron cycle must be re-evaluated. Here we show that hydrothermal iron sources are important in governing the oceanic iron inventory and reproducing dissolved iron observations in a global model. Helium isotopes and iron data are compiled to parameterise the hydrothermal source of dissolved iron using prior observational studies as additional constraints. Importantly, new deep-ocean datasets from two distinct Southern Ocean basins are used to statistically evaluate model results. The deep ocean iron data collected during GEOTRACES cruises to the Southern Ocean suggest that hydrothermal Fe needs to be included in models in order to reproduce observations. Hydrothermalism can increase the biological carbon pump by 20-30% in the Southern Ocean and the impact of variability in the assumed hydrothermal flux is non-linear. We suggest a revised model of the marine iron cycle, particularly for the iron-limited Southern Ocean, with a role for different iron sources over distinct timescales. Due to its relative constancy at millennial timescales, hydrothermalism can "buffer" the oceanic dissolved iron inventory against shorter-term variability in other sources, such as dust deposition.

Item Details

Item Type:Conference Extract
Research Division:Earth Sciences
Research Group:Oceanography
Research Field:Chemical oceanography
Objective Division:Environmental Management
Objective Group:Management of Antarctic and Southern Ocean environments
Objective Field:Antarctic and Southern Ocean oceanic processes
UTAS Author:Bowie, AR (Professor Andrew Bowie)
UTAS Author:Lannuzel, D (Associate Professor Delphine Lannuzel)
UTAS Author:Remenyi, TA (Dr Tom Remenyi)
ID Code:71334
Year Published:2010
Deposited By:Research Division
Deposited On:2011-07-14
Last Modified:2011-07-14

Repository Staff Only: item control page