eCite Digital Repository

Unsupervised fuzzy classification and object-based image analysis of multibeam data to map deep water substrates, Cook Strait, New Zealand

Citation

Lucieer, VL and Lamarche, G, Unsupervised fuzzy classification and object-based image analysis of multibeam data to map deep water substrates, Cook Strait, New Zealand, Continental Shelf Research, 31, (11) pp. 1236-1247. ISSN 0278-4343 (2011) [Refereed Article]


Preview
PDF
Restricted - Request a copy
3Mb
  

Copyright Statement

The definitive version is available at http://www.sciencedirect.com

Official URL: http://www.sciencedirect.com

DOI: doi:10.1016/j.csr.2011.04.016

Abstract

A comprehensive 32 kHz multibeam bathymetry and backscatter survey of Cook Strait, New Zealand (8500 km2), is used to generate a regional substrate classification map over a wide range of water depths, seafloor substrates and geological landforms using an automated mapping method based on the textural image analysis of backscatter data. Full processing of the backscatter is required in order to obtain an image with a strongly attenuated specular reflection. Image segmentation of the merged backscatter and bathymetry layers is constrained using shape, compactness, and texture measures. The number of classes and their spatial distribution are statistically identified by employing an unsupervised fuzzy-c-means (FCM) clustering algorithm to sediment samples, independent of the backscatter data. Classification is achieved from the overlay of the FCM result onto a segmented image and attributing segments with the FCM class. Four classes are identified and uncertainty in class attribution is quantified by a confusion index layer. Validation of the classification map is done by comparing the results with the sediment and structural maps. Backscatter (BS) strength angular profiles are used to show acoustic class separation. The method takes us one step further in combining multibeam data with physical seabed data in a complementary analysis to seek correlations between datasets using object-based image analysis and unsupervised classification. Texture within these identified classes is then examined for correlation with typical backscatter angular responses for mud, sand and gravel. The results show a first order correlation between each of the classes and both the sedimentary properties and the geomorphological map. Highlights ►Multibeam survey of Cook Strait was used to generate a regional substrate classification map. ► Ranges of water depths, seafloor substrates and geological landforms were classified. ► Substrate classes are identified using an unsupervised classification technique. ► Texture analysis identified classes consistent with backscatter angular responses for sediments. ► Object-based image analysis allows for correlations to be made between physical and acoustic data.

Item Details

Item Type:Refereed Article
Keywords:Segmentation,Backscatter,Bathymetry,Habitat mapping, Fuzzy-c-means
Research Division:Environmental Sciences
Research Group:Ecological Applications
Research Field:Ecological Applications not elsewhere classified
Objective Division:Environment
Objective Group:Ecosystem Assessment and Management
Objective Field:Ecosystem Assessment and Management of Marine Environments
Author:Lucieer, VL (Dr Vanessa Lucieer)
ID Code:70452
Year Published:2011
Web of Science® Times Cited:20
Deposited By:Sustainable Marine Research Collaboration
Deposited On:2011-06-21
Last Modified:2012-04-04
Downloads:4 View Download Statistics

Repository Staff Only: item control page