eCite Digital Repository

Low genetic diversity in the bottlenecked population of endangered non-native banteng in northern Australia


Bradshaw, CJA and Isagi, Y and Kaneko, S and Brook, BW and Bowman, DMJS and Frankham, R, Low genetic diversity in the bottlenecked population of endangered non-native banteng in northern Australia, Molecular Ecology, 16, (14) pp. 2998-3008. ISSN 0962-1083 (2007) [Refereed Article]

DOI: doi:10.1111/j.1365-294x.2007.03365.x


Undomesticated (wild) banteng are endangered in their native habitats in Southeast Asia. A potential conservation resource for the species is a large, wild population in Garig Gunak Barlu National Park in northern Australia, descended from 20 individuals that were released from a failed British outpost in 1849. Because of the founding bottleneck, we determined the level of genetic diversity in four subpopulations in the national park using 12 microsatellite loci, and compared this to the genetic diversity of domesticated Asian Bali cattle, wild banteng and other cattle species. We also compared the loss of genetic diversity using plausible genetic data coupled to a stochastic Leslie matrix model constructed from existing demographic data. The 53 Australian banteng sampled had average microsatellite heterozygosity (HE) of 28% compared to 67% for outbred Bos taurus and domesticated Bos javanicus populations. The Australian banteng inbreeding coefficient (F) of 0.58 is high compared to other endangered artiodactyl populations. The 95% confidence bounds for measured heterozygosity overlapped with those predicted from our stochastic Leslie matrix population model. Collectively, these results show that Australian banteng have suffered a loss of genetic diversity and are highly inbred because of the initial population bottleneck and subsequent small population sizes. We conclude that the Australian population is an important hedge against the complete loss of wild banteng, and it can augment threatened populations of banteng in their native range. This study indicates the genetic value of small populations of endangered artiodactyls established ex situ.

Item Details

Item Type:Refereed Article
Research Division:Environmental Sciences
Research Group:Environmental management
Research Field:Conservation and biodiversity
Objective Division:Environmental Management
Objective Group:Other environmental management
Objective Field:Other environmental management not elsewhere classified
UTAS Author:Bowman, DMJS (Professor David Bowman)
ID Code:69286
Year Published:2007
Web of Science® Times Cited:18
Deposited By:Plant Science
Deposited On:2011-04-19
Last Modified:2011-06-20

Repository Staff Only: item control page