University of Tasmania
Browse

File(s) under permanent embargo

Synchronized circadian bioluminescence in cave-dwelling Arachnocampa tasmaniensis (glowworms)

journal contribution
posted on 2023-05-17, 04:58 authored by Merritt, DJ, Clarke, AK
Larvae of the genus Arachnocampa, known as glowworms, are bioluminescent predatory insects that use light to attract prey. One species, Arachnocampa flava, is known to possess true circadian regulation of bioluminescence: light:dark cycles entrain the rhythm of nocturnal glowing. Given the absence of natural light as a cue in caves, we addressed the question of whether cave populations of Arachnocampa tasmaniensis, a species known to inhabit caves as well as epigean environments, are rhythmic. We found that the major dark-zone cave populations of A. tasmaniensis maintain a high-amplitude 24-hour rhythm of bioluminescence, with the acrophase during external daylight hours. Populations of A. tasmaniensis in caves many kilometers apart show similar, but not exactly the same, timing of the acrophase. Systematic investigation of colonies in the dark zone of a single cave showed that some smaller colonies distant to the main ceiling colony, also in the dark zone, glow in antiphase. Periodic monitoring of a single colony over several years showed that the acrophase shifted from nocturnal to diurnal some time between October 2008 and January 2009. Prey availability was investigated as a possible zeitgeber. The acrophase of prey availability, as measured by light trapping, and the acrophase of bioluminescence do not precisely match, occurring 3 hours apart. Using in-cave artificial light exposure, we show that after LD cycles, cave larvae become entrained to bioluminesce during the foregoing photophase. In contrast, epigean larvae exposed to artificial LD cycles after a period of DD become entrained to bioluminesce during the foregoing scotophase. One explanation is that individuals within colonies in the dark zone synchronize their bioluminescence rhythms through detection and matching of each other’s bioluminescence.

History

Publication title

Journal of Biological Rhythms

Volume

26

Pagination

34-43

ISSN

0748-7304

Department/School

School of Natural Sciences

Publisher

Sage Publications Ltd

Place of publication

6 Bonhill Street, London, England, Ec2A 4Pu

Rights statement

Copyright © 2011 SAGE Publications

Repository Status

  • Restricted

Socio-economic Objectives

Other environmental management not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC