eCite Digital Repository

Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit


Brodribb, TJ and Bowman, DMJS and Nichols, S and Delzon, S and Burlett, R, Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit, New Phytologist, 188, (2) pp. 533-542. ISSN 0028-646X (2010) [Refereed Article]

Restricted - Request a copy

Copyright Statement

The definitive published version is available online at:

Official URL:

DOI: doi:10.1111/j.1469-8137.2010.03393.x


• Motivated by the urgent need to understand how water stress-induced embolism limits the survival and recovery of plants during drought, the linkage between water-stress tolerance and xylem cavitation resistance was examined in one of the world’s most drought resistant conifer genera, Callitris. • Four species were subjected to drought treatments of )5, )8 and )10 MPa for a period of 3–4 wk, after which plants were rewatered. Transpiration, basal growth and leaf water potential were monitored during and after drought. • Lethal water potential was correlated with the tension producing a 50% loss of stem hydraulic conductivity. The most resilient species suffered minimal embolism and recovered gas exchange within days of rewatering from )10 MPa, while the most sensitive species suffered major embolism and recovered very slowly. The rate of repair of water transport in the latter case was equal to the rate of basal area growth, indicating xylem reiteration as the primary means of hydraulic repair. • The survival of, and recovery from, water stress in Callitris are accurately predicted by the physiology of the stem water-transport system. As the only apparent means of xylem repair after embolism, basal area growth is a critical part of this equation.

Item Details

Item Type:Refereed Article
Keywords:cavitation, conifer, drought, embolism, growth, hydraulic, recovery, transpiration.
Research Division:Biological Sciences
Research Group:Evolutionary biology
Research Field:Biological adaptation
Objective Division:Environmental Management
Objective Group:Terrestrial systems and management
Objective Field:Terrestrial biodiversity
UTAS Author:Brodribb, TJ (Professor Tim Brodribb)
UTAS Author:Bowman, DMJS (Professor David Bowman)
UTAS Author:Nichols, S (Mr Scott Nichols)
ID Code:67236
Year Published:2010
Web of Science® Times Cited:238
Deposited By:Plant Science
Deposited On:2011-03-01
Last Modified:2011-05-12

Repository Staff Only: item control page