University of Tasmania
Browse

File(s) under permanent embargo

Hydrodynamic characteristics of a lunate shaped oscillating propulsor

journal contribution
posted on 2023-05-17, 04:25 authored by Liu, P, Neil Bose
Research was conducted to study the hydrodynamic efficiency of a foil with aft-swept wing tips. A potential flow based time domain panel method was formulated to predict the performance of a lunate and rectangular foil in large amplitude, unsteady motion. Skin drag was approximated and boundary layer growth and separation were also estimated. Hydrodynamic efficiency was evaluated in terms of propulsive efficiency and thrust coefficient of the foil. Results are presented for a lunate shaped planform and for a rectangular foil. Predictions show that the lunate shaped planform has a substantially higher propulsive efficiency (13% higher) than the rectangular foil under heavy load conditions when the feathering parameter is zero, throughout a range of reduced frequencies (0.2 to 1.8). Under a medium load condition, however, the rectangular foil gave a higher propulsive efficiency at reduced frequencies less than 0.5 and the same efficiency value at a reduced frequency of 1.8. For a practical range of reduced frequencies between 0.5 and 1.0, the lunate tail gave higher propulsive efficiency. The lunate planform gave a lower thrust coefficient at a heavy load and higher thrust at a medium load condition than the rectangular planform for all reduced frequencies.

History

Publication title

Ocean Engineering

Volume

26

Issue

6

Pagination

519-530

ISSN

0029-8018

Department/School

Australian Maritime College

Publisher

Pergamon-Elsevier Science Ltd

Place of publication

The Boulevard, Langford Lane, Kidlington, Oxford, England

Rights statement

The definitive version is available at http://www.sciencedirect.com

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in engineering

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC