University of Tasmania
Browse

File(s) under permanent embargo

3D gradient coil design for open MRI systems

journal contribution
posted on 2023-05-17, 04:02 authored by While, PT, Lawrence ForbesLawrence Forbes, Crozier, S
Existing gradient coil design methods typically require some predetermined surface to be specified upon which the precise locations of coil windings are optimised with respect to gradient homogeneity and other measures of coil performance. In contrast, in this paper an analytic inverse method is presented for the theoretical design of 3D gradient coils in which the precise 3D geometry of the coils is obtained as part of the optimisation process. This method has been described previously for cylindrical wholebody gradients and is extended here for open MRI systems. A 3D current density solution is obtained using Fourier series combined with Tikhonov regularisation. The examples presented involve a minimum power penalty function and an optional shielding constraint. A discretised set of 3D coil windings is obtained using an equi-flux streamline seeding method. Results for an unshielded example display a concentration of windings within the portion of the coil volume nearest the imaging region and looped return path windings taken away from this region. However, for a shielded example the coil windings are found to lie almost exclusively on biplanar surfaces, suggesting that this is the optimum geometry for a shielded minimum power open coil.

History

Publication title

Journal of Magnetic Resonance

Volume

207

Pagination

124-133

ISSN

1090-7807

Department/School

School of Natural Sciences

Publisher

Academic Press Inc Elsevier Science

Place of publication

525 B St, Ste 1900, San Diego, USA, Ca, 92101-4495

Rights statement

The definitive version is available at http://www.sciencedirect.com

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the mathematical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC