University of Tasmania
Browse

File(s) not publicly available

Angiotensin-converting enzyme genotype and successful ascent to extreme high altitude

journal contribution
posted on 2023-05-17, 02:56 authored by Thompson, J, Raitt, J, Hutchings, L, Drenos, F, Bjargo, E, Loset, A, Grocott, M, Montgomery, H, Ahuja, V, Aref-Adib, G, Burnham, R, Chisholm, A, Clarke, K, Coates, D, Coates, M, Cook, D, Cox, M, Dhillon, S, Dougall, C, Doyle, P, Duncan, P, Edsell, M, Edwards, LM, Evans, L, Gardiner, P, Gunning, P, Hart, N, Harrington, J, Harvey, J, Holloway, C, Howard, D, Hurlbut, D, Imray, C, Ince, C, Jonas, M, van der Kaaij, J, Khosravi, M, Kolfschoten, N, Levett, D, Leury, H, Luks, A, Martin, D, McMorrow, R, Meale, P, Mitchell, K, Morgan, G, Morgan, J, Murray, A, Mythen, M, Newman, S, O'Dwyer, M, Pate, J, Plant, T, Pun, M, Richards, P, Richardson, A, Rodway, G, Simpson, J, Stroud, C, Stroud, M, Stygal, J, Symons, B, Szawarski, P, Van Tulleken, A, Van Tulleken, C, Vercueil, A, Wandrag, L, Wilson, M, Windsor, J, Basnyat, B, Clarke, C, Hornbein, T, Milledge, J, West, J
Interindividual variation in acclimatization to altitude suggests a genetic component, and several candidate genes have been proposed. One such candidate is a polymorphism in the angiotensin converting enzyme (ACE) gene, where the insertion (I-allele), rather than the deletion (D-allele), of a 287 base pair sequence has been associated with lower circulating and tissue ACE activity and has a greater than normal frequency among elite endurance athletes and, in a single study, among elite high altitude mountaineers. We tested the hypothesis that the I-allele is associated with successful ascent to the extreme high altitude of 8000 m. 141 mountaineers who had participated in expeditions attempting to climb an 8000-m peak completed a questionnaire and provided a buccal swab for ACE I/D genotyping. ACE genotype was determined in 139 mountaineers. ACE genotype distribution differed significantly between those who had successfully climbed beyond 8000 m and those who had not (p = 0.003), with a relative overrepresentation of the I-allele among the successful group (0.55 vs. 0.36 in successful vs. unsuccessful, respectively). The I-allele was associated with increased maximum altitudes achieved: 8079 ± 947 m for DDs, 8107 ± 653 m for IDs, and 8559 ± 565 m for IIs (p = 0.007). There was no statistical difference in ACE genotype frequency between those who climbed to over 8000 m using supplementary oxygen and those who did not (p = 0.267). This study demonstrates an association between the ACE I-allele and successful ascent to over 8000 m. © Mary Ann Liebert, Inc. 2007.

History

Publication title

High Altitude Medicine and Biology

Volume

8

Issue

4

Pagination

278-285

ISSN

1527-0297

Department/School

Tasmanian School of Medicine

Publisher

Mary Ann Liebert Inc Publ

Place of publication

2 Madison Avenue, Larchmont, USA, Ny, 10538

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the health sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC