University of Tasmania
Browse

File(s) not publicly available

Fission of pancreatic islets during postnatal growth of the mouse

journal contribution
posted on 2023-05-17, 02:37 authored by Seymour, PA, William BennettWilliam Bennett, Slack, JMW
A cell composition analysis was made of the pancreatic islets in postnatal H253 mice. This line has a lacZ insertion on the X chromosome so that in female hemizygotes 50% of cells should be positive for β-galactosidase and 50% negative. Immediately after birth, the islets were of a heterogeneous cell composition. However, by 4 weeks some islets have become homogeneous. This suggests that islets progress towards monoclonality in a similar way to the intestinal crypts and stomach gastric glands. Pancreatic islets may therefore represent 'structural proliferative units' in the overall histological organization of the pancreas. Reduction of genetic heterogeneity might arise from cell turnover, fission of islets or both. Analysis of the cell composition of the X-inactivation mosaic mice also provides the first clear evidence for islet fission in pancreatic development. Irregularly shaped islets resembling dumb-bells, with a characteristic neck of α-cells, were observed with decreasing frequency with increasing age. Three-dimensional reconstruction confirmed their resemblance to conjoined islets. The cell composition analysis showed: (1) the relatedness of the two sides of a dumb-bell islet is significantly higher than between two non-dumb-bell islets and (2) the relatedness of two randomly selected islets decreases as the distance between them increases. This suggests that dumb-bell islets are in a state of fission rather than fusion, and that islet fission is a mode of islet production in the postnatal pancreas.

History

Publication title

Journal of Anatomy: Molecular, Cellular and Experimental Morphology

Volume

204

Pagination

103-116

ISSN

0021-8782

Department/School

Menzies Institute for Medical Research

Publisher

Blackwell Publishing Ltd

Place of publication

9600 Garsington Rd, Oxford, England, Oxon, Ox4 2Dg

Repository Status

  • Restricted

Socio-economic Objectives

Clinical health not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC