eCite Digital Repository

Genetic structure of a recent climate change-driven range extension


Banks, SC and Ling, SD and Johnson, CR and Piggott, MP and Williamson, JE and Beheregaray, LB, Genetic structure of a recent climate change-driven range extension, Molecular Ecology, 19, (10) pp. 2011-2024. ISSN 0962-1083 (2010) [Refereed Article]

Restricted - Request a copy

Copyright Statement

The definitive published version is available online at:

DOI: doi:10.1111/j.1365-294X.2010.04627.x


The life-history strategies of some species make them strong candidates for rapid exploitation of novel habitat under new climate regimes. Some early-responding species may be considered invasive, and negatively impact on �na�ve� ecosystems. The barrensforming sea urchin Centrostephanus rodgersii is one such species, having a high dispersal capability and a high-latitude range margin limited only by a developmental temperature threshold. Within this species� range in eastern Australian waters, sea temperatures have increased at greater than double the global average rate. The coinciding poleward range extension of C. rodgersii has caused major ecological changes, threatening reef biodiversity and fisheries productivity. We investigated microsatellite diversity and population structure associated with range expansion by this species. Generalized linear model analyses revealed no reduction in genetic diversity in the newly colonized region. A �seascape genetics� analysis of genetic distances found no spatial genetic structure associated with the range extension. The distinctive genetic characteristic of the extension zone populations was reduced population-specific FST, consistent with very rapid population expansion. Demographic and genetic simulations support our inference of high connectivity between pre- and post-extension zones. Thus, the range shift appears to be a poleward extension of the highly-connected rangewide population of C. rodgersii. This is consistent with advection of larvae by the intensified warm water East Australian current, which has also increased Tasmanian Sea temperatures above the species� lower developmental threshold. Thus, ocean circulation changes have improved the climatic suitability of novel habitat for C. rodgersii and provided the supply of recruits necessary for colonization.

Item Details

Item Type:Refereed Article
Keywords:climate change, colonization, dispersal, echinoid, ocean current, range shift, seaurchin, seascape genetics
Research Division:Biological Sciences
Research Group:Ecology
Research Field:Marine and estuarine ecology (incl. marine ichthyology)
Objective Division:Environmental Management
Objective Group:Terrestrial systems and management
Objective Field:Assessment and management of terrestrial ecosystems
UTAS Author:Ling, SD (Dr Scott Ling)
UTAS Author:Johnson, CR (Professor Craig Johnson)
ID Code:63658
Year Published:2010
Web of Science® Times Cited:63
Deposited By:Zoology
Deposited On:2010-05-20
Last Modified:2014-11-24

Repository Staff Only: item control page