University of Tasmania
Browse

File(s) not publicly available

Numerical Investigation of particle breakage as applied to mechanical crushing - Part II: Interparticle breakage

journal contribution
posted on 2023-05-17, 02:32 authored by kou, SQ, Hongyuan LiuHongyuan Liu, Lindqvist, PA, Tang, CA, Xu, XH
A numerical approach to interparticle breakage is applied using the rock failure process analysis code, RFPA2D. A 2D particle assembly in a container is first numerically simulated to obtain the fringe patterns of stress fields that resemble the photoelastic test. Then, in addition, the interparticle breakage of the particle assembly in a chamber is conducted. The chamber consists of a steel container and a steel platen for transferring the load, and contains 15 particles of arbitrary sizes and irregular shapes. A plane strain condition is assumed. The particle bed is loaded under form conditions, in which the size reduction and the applied force are a function of the displacement. The numerical results indicate that, during the crushing process, three principal regimes appear: (i) the elastic deformation regime, where each particle deforms elastically; (ii) the fragmentation regime, where the particle assembly is crushed in a particle-by-particle fashion; and (iii) the assembly hardening regime, where the densified assembly recovers a significant stiffness. The dominant mode of failure is at first splitting, which is more or less parallel to the loading direction, and then progressive crushing, which mainly depends on the confinement from the chamber walls. The analysis of the load-displacement curves of the assembly obtained from the simulations reveals a high undulating load plateau, which suggests a macro-ductile behaviour. © 2002 Published by Elsevier Science Ltd.

History

Publication title

International Journal of Rock Mechanics and Mining Sciences

Volume

38

Issue

8

Pagination

1163-1172

ISSN

1365-1609

Department/School

School of Engineering

Publisher

Pergamon-Elsevier Science Ltd

Place of publication

The Boulevard, Langford Lane, Kidlington, Oxford, England, Ox5 1Gb

Repository Status

  • Restricted

Socio-economic Objectives

Civil construction processes

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC