University of Tasmania
Browse

File(s) not publicly available

Numerical simulation of the rock fragmentation process induced by indenters

journal contribution
posted on 2023-05-17, 02:32 authored by Hongyuan LiuHongyuan Liu, Kou, SQ, Lindqvist, PA, Tang, CA
Rock fragmentation processes induced by single and double indenters were examined by a numerical method. The simulated results reproduce the progressive process of rock fragmentation in indentation. Rock deforms clastically at the initial loading stage. Then tensile cracks are initiated around the two corners of the truncated indenter and propagate in the well-known conical Hertzian manner. The rocks immediately under the indenter are in a highly tri-axial stress state, and some of them fail in the ductile cataclastic mode with the stress satisfying the ductile failure surface of the double elliptic strength criterion. With the tensile cone cracks and ductile cataclastic failure releasing the confining pressure, the rocks under the indenter are compressed into failure and the crushed zone gradually comes into being. With increasing loading displacement, the re-compaction behaviour of the crushed zone occurs. Side cracks initiated from the crushed zone or bifurcated from the cone cracks are driven by tensile stress associated with the crushed zone to propagate in a curvilinear path and finally intersect with the free surface to form chips. It is pointed out that the curvilinear path is caused by heterogeneity. The simulated force-penetration curve is in fact indication of the propagation of cracks, the crushing of microstructural grains and the formation of chips. It is found that the confining pressure has an important influence on the indentation results. With decreasing confining pressure, there is a decrease in the indentation strength and a change in the rock failure process from the formation of rock chips to a vertically axially splitting failure. The simulated fragmentation process in the double indenter test reproduces the side cracks, which are induced by two indenters, propagate, interact and finally coalesce, chipping the rock between the indenters. The line spacing is an important factor that affects the fragmentation efficiency in multiple indenter tests. It is pointed out that simultaneous loading with multiple indenters with an appropriate line spacing seems to provide a possibility of forming larger rock chips, controlling the direction of subsurface cracks and consuming a minimum total specific energy. According to the simulated results, it is believed that the numerical simulation method will contribute to an improved knowledge of rock fragmentation in indentation, which will in turn help to enhance mining and drilling efficiency through the improved design of mining tools and equipment. © 2002 Elsevier Science Ltd. All rights reserved.

History

Publication title

International Journal of Rock Mechanics and Mining Sciences

Volume

39

Issue

4

Pagination

491-505

ISSN

1365-1609

Department/School

School of Engineering

Publisher

Pergamon-Elsevier Science Ltd

Place of publication

The Boulevard, Langford Lane, Kidlington, Oxford, England, Ox5 1Gb

Repository Status

  • Restricted

Socio-economic Objectives

Civil construction processes

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC