eCite Digital Repository

Effect of nitrogen supply on leaf appearance, leaf growth, leaf nitrogen economy and photosynthetic capacity in maize (Zea mays L.)


Vos, J and van der Putten, PEL and Birch, CJ, Effect of nitrogen supply on leaf appearance, leaf growth, leaf nitrogen economy and photosynthetic capacity in maize (Zea mays L.), Field Crops Research: An International Journal, 93, (1) pp. 64-73. ISSN 0378-4290 (2005) [Refereed Article]

DOI: doi:10.1016/j.fcr.2004.09.013


Leaf area growth and nitrogen concentration per unit leaf area, N a (g m-2 N) are two options plants can use to adapt to nitrogen limitation. Previous work indicated that potato (Solanum tuberosum L.) adapts the size of leaves to maintain Na and photosynthetic capacity per unit leaf area. This paper reports on the effect of N limitation on leaf area production and photosynthetic capacity in maize, a C4 cereal. Maize was grown in two experiments in pots in glasshouses with three (0.84-6.0 g N pot-1) and five rates (0.5-6.0 g pot-1) of N. Leaf tip and ligule appearance were monitored and final individual leaf area was determined. Changes with leaf age in leaf area, leaf N content and light-saturated photosynthetic capacity, Pmax, were measured on two leaves per plant in each experiment. The final area of the largest leaf and total plant leaf area differed by 16 and 29% from the lowest to highest N supply, but leaf appearance rate and the duration of leaf expansion were unaffected. The N concentration of expanding leaves (Na or %N in dry matter) differed by at least a factor 2 from the lowest to highest N supply. A hyperbolic function described the relation between Pmax and Na. The results confirm the 'maize strategy': leaf N content, photosynthetic capacity, and ultimately radiation use efficiency is more sensitive to nitrogen limitation than are leaf area expansion and light interception. The generality of the findings is discussed and it is suggested that at canopy level species showing the 'potato strategy' can be recognized from little effect of nitrogen supply on radiation use efficiency, while the reverse is true for species showing the 'maize strategy' for adaptation to N limitation.

Item Details

Item Type:Refereed Article
Research Division:Agricultural, Veterinary and Food Sciences
Research Group:Horticultural production
Research Field:Horticultural crop growth and development
Objective Division:Plant Production and Plant Primary Products
Objective Group:Horticultural crops
Objective Field:Field grown vegetable crops
UTAS Author:Birch, CJ (Associate Professor Colin Birch)
ID Code:63354
Year Published:2005
Web of Science® Times Cited:160
Deposited By:Agricultural Science
Deposited On:2010-04-30
Last Modified:2012-04-20

Repository Staff Only: item control page