University of Tasmania
Browse

File(s) not publicly available

Mixed meal and light exercise each recruit muscle capillaries in healthy humans

journal contribution
posted on 2023-05-17, 02:15 authored by Michelle Keske, Clerk, LH, Lindner, JR, Price, WJ, Jahn, LA, Leong-Poi, H, Barrett, EJ
Intense exercise and insulin each increases total limb blood flow and recruits muscle capillaries, presumably to facilitate nutrient exchange. Whether mixed meals or light exercise likewise recruits capillaries is unknown. We fed 18 (9 M, 9 F) healthy volunteers a 480-kcal liquid mixed meal. Plasma glucose, insulin, brachial artery flow, and forearm muscle microvascular blood volume were measured before and after the meal. Brachial artery flow and microvascular volume were also examined with light (25% max), moderate (50%), and heavy (80%) forearm contraction every 20 s in 5 (4 M, 1 F) healthy adults. After the meal, glucose and insulin rose modestly (to ¡­7 mM and ¡­270 pM) and peaked by 30 min, whereas brachial artery blood flow (P < 0.05) and the microvascular volume (P < 0.01) each increased significantly by 60 min, and microvascular flow velocity did not change. For exercise, both 50 and 80%, but not 25% maximal handgrip, increased average forearm and brachial artery blood flow (P < 0.01). Flow increased immediately after each contraction and declined toward basal over 15 s. Exercise at 25% max increased microvascular volume threefold (P < 0.01) without affecting microvascular flow velocity or total forearm blood flow. Forearm exercise at 80% maximal grip increased both microvascular volume and microvascular flow velocity (P < 0.05 each). We conclude that light exercise and simple meals each markedly increases muscle microvascular volume, thereby expanding the endothelial surface for nutrient exchange, and that capillary recruitment is an important physiological response to facilitate nutrient/hormone delivery in healthy humans.

History

Publication title

American Journal of Physiology: Endocrinology and Metabolism

Volume

290

Issue

6

Pagination

E1191-E1197

ISSN

0193-1849

Department/School

Menzies Institute for Medical Research

Publisher

Amer Physiological Soc

Place of publication

9650 Rockville Pike, Bethesda, USA, Md, 20814

Repository Status

  • Restricted

Socio-economic Objectives

Clinical health not elsewhere classified

Usage metrics

    University Of Tasmania

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC