eCite Digital Repository

Early Archean hot springs above epithermal veins, North Pole, Western Australia: New insights from fluid inclusion microanalysis

Citation

Harris, AC and White, NC and McPhie, J and Bull, SW and Line, MA and Skrzeczynski, R and Mernagh, TP and Tosdal, RM, Early Archean hot springs above epithermal veins, North Pole, Western Australia: New insights from fluid inclusion microanalysis, Economic Geology and The Bulletin of The Society of Economic Geologists, 104, (6) pp. 793-814. ISSN 0361-0128 (2009) [Refereed Article]

DOI: doi:10.2113/gsecongeo.104.6.793

Abstract

The worlds most ancient biogenic structures are found ill the North Pole Dome of Western Australia, where 3.47-Gyr-old algal mats and stromatolites are closely associated with bedding-conformable and discordant laminar quartz, chalcedony, and barite. Barite-rich quartz hydrothermal veins with similar mineralogy occur throughout the stratigraphy below the conformable biogenic structures. With the exception of the large volume of barite, these bedding-conformable and discordant laminar quartz veins exhibit textures and associated hydrothermal alteration (quartz-chalcedony-Chlorite-illite +/- calcite-adularia-pyrite) typical of epithermal deposits formed from near-neutral pH fluids. We characterize the physical and chemical conditions of the ancient water responsible for depositing both the discordant and conformable quartz-chalcedony-barite as it passed through the upper parts of the Archean crust. Field relationships, combined with new fluid inclusion data, suggest that the best documented stromatolites in the North Pole Dome occur adjacent to quartz-chalcedony bands formed from cool (120 degrees C), low-salinity (< 3 wt% NaCl equiv) waters. Higher temperature (up to 300 degrees C, more saline (up to 10 wt% NaCl equiv) and CO2-H2S-rich (+/- CH4) aqueous fluids occur ill deeper level veins. Rare inclusions that are unusually rich in CO2 (containing liquid and gaseous CO2 and liquid H2O) Support the existence of multiple batches of hydrothermal fluids (with variable densities and gas contents). oxygen isotope data (8.7-3.7 parts per thousand) suggest that the causative fluids comprised admixtures of deeply circulated surface water with variable input of magmatic components. Our findings reveal that the earliest life known oil Earth lived ill and around a hydrothermal system with temperatures from similar to 300 degrees C at depth to 120 degrees C near the paleosurface, in art environment closely analogous to modern hot springs, developed above epithermal veins. Evidence exists for the introduction of different batches of hydrothermal fluids (with variable densities and gas contents) during the development of veins. These findings support previous studies that demonstrate that the processes that form epithermal deposits have been active throughout geologic time, and the present-day distribution of epithermal deposits is dominantly a result of preservation, not process.

Item Details

Item Type:Refereed Article
Keywords:epithermal veins, Early Archaean, Western Australia, fluid inclusions
Research Division:Earth Sciences
Research Group:Geochemistry
Research Field:Geochemistry not elsewhere classified
Objective Division:Mineral Resources (excl. Energy Resources)
Objective Group:Mineral Exploration
Objective Field:Mineral Exploration not elsewhere classified
Author:Harris, AC (Dr Anthony Harris)
Author:White, NC (Dr Noel White)
Author:McPhie, J (Professor Jocelyn McPhie)
Author:Bull, SW (Dr Stuart Bull)
Author:Line, MA (Dr Martin Line)
ID Code:62065
Year Published:2009
Web of Science® Times Cited:12
Deposited By:Centre for Ore Deposit Research - CODES CoE
Deposited On:2010-03-09
Last Modified:2010-04-15
Downloads:0

Repository Staff Only: item control page