University of Tasmania
Browse

File(s) under permanent embargo

Evidence for melt migration enhancing recrystallization of metastable assemblages in mafic lower crust, Fiordland, New Zealand

journal contribution
posted on 2023-05-17, 01:52 authored by Daczko, NR, Jacqueline HalpinJacqueline Halpin
A major arc batholith, the Western Fiordland Orthogneiss (WFO) in Fiordland, New Zealand, exhibits irregular, spatially restricted centimetre-scale recrystallization from two-pyroxene hornblende granulite to garnet granulite flanking felsic dykes. At Lake Grave, northern Fiordland, the composition and texture of narrow (< 10-20 mm across) felsic dykes that cut the orthogneiss are consistent with an igneous origin and injection of melt to form orthogneiss migmatite. New U-Pb geochronology suggests that the injection of dykes and migmatization occurred at c. 115 Ma, during the later stages of arc magmatism. Recrystallization to garnet granulite is promoted by volatile extraction from the host two-pyroxene hornblende granulite via adjacent dykes and the patchy development of garnet granulite is left as a marker adjacent to the melt migration path. New mineral equilibria modelling suggests that a two-pyroxene hornblende assemblage is stable at < 11 kbar, whereas a garnet granulite assemblage is stable at > 12 kbar, suggesting that garnet granulite may have formed with < 5 km crustal loading of the batholith. Although the garnet granulite assemblages signify that the WFO experienced high-P conditions, the very local nature of these textures indicates widespread metastability (> 90%) of the two-pyroxene hornblende granulite assemblages. These results indicate the strongly metastable nature of assemblages in mafic lower arc crust during deep burial and demonstrate that the degree of reaction in the case of Fiordland is related to interaction with migrating melts.

History

Publication title

Journal of Metamorphic Geology

Volume

27

Pagination

167-185

ISSN

0263-4929

Department/School

School of Natural Sciences

Publisher

Blackwell Publishing Ltd

Place of publication

9600 Garsington Rd, Oxford, England, Oxon, Ox4 2Dg

Rights statement

The definitive published version is available online at: http://www3.interscience.wiley.com/

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the earth sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC