eCite Digital Repository

The last 10 amino acid residues beyond the hydrophobic motif are critical for the catalytic competence and function of protein kinase Cá

Citation

Yeong, SS and Zhu, Y and Smith, D and Verma, C and Lim, WG and Tan, BJ and Li, QT and Cheung, NS and Cai, M and Zhu, YZ and Zhou, SF and Tan, SL and Duan, W, The last 10 amino acid residues beyond the hydrophobic motif are critical for the catalytic competence and function of protein kinase Cá, Journal of Biological Chemistry, 281, (41) pp. 30768-30781. ISSN 0021-9258 (2006) [Refereed Article]

DOI: doi:10.1074/jbc.M511278

Abstract

The segment C-terminal to the hydrophobic motif at the V5 domain of protein kinase C (PKC) is the least conserved both in length and in amino acid identity among all PKC isozymes. By generating serial truncation mutants followed by biochemical and functional analyses, we show here that the very C terminus of PKCメ is critical in conferring the full catalytic competence to the kinase and for transducing signals in cells. Deletion of one C-terminal amino acid residue caused the loss of ´60% of the catalytic activity of the mutant PKCメ, whereas deletion of 10 C-terminal amino acid residues abrogated the catalytic activity of PKCメ in immune complex kinase assays. The PKCメ C-terminal truncation mutants were found to lose their ability to activate mitogen-activated protein kinase, to rescue apoptosis induced by the inhibition of endogenous PKC in COS cells, and to augment melatonin-stimulated neurite outgrowth. Furthermore, molecular dynamics simulations revealed that the deletion of 1 or 10 C-terminal residues results in the deformation of the V5 domain and the ATP-binding pocket, respectively. Finally, PKCメ immunoprecipitated using an antibody against its C terminus had only marginal catalytic activity compared with that of the PKCメ immunoprecipitated by an antibody against its N terminus. Therefore, the very C-terminal tail of PKCメ is a novel determinant of the catalytic activity of PKC and a promising target for selective modulation of PKCメ function. Molecules that bind preferentially to the very C terminus of distinct PKC isozymes and suppress their catalytic activity may constitute a new class of selective inhibitors of PKC.

Item Details

Item Type:Refereed Article
Research Division:Medical and Health Sciences
Research Group:Neurosciences
Research Field:Cellular Nervous System
Objective Division:Health
Objective Group:Clinical Health (Organs, Diseases and Abnormal Conditions)
Objective Field:Nervous System and Disorders
Author:Cheung, NS (Dr Nam Cheung)
ID Code:61617
Year Published:2006
Web of Science® Times Cited:14
Deposited By:Menzies Institute for Medical Research
Deposited On:2010-03-04
Last Modified:2010-05-04
Downloads:0

Repository Staff Only: item control page