University of Tasmania
Browse

File(s) not publicly available

Nitric oxide does not significantly contribute to changes in pulse pressure amplification during light aerobic exercise

journal contribution
posted on 2023-05-17, 01:36 authored by James SharmanJames Sharman, McEniery, CM, Campbell, R, Pusalkar, P, Wilkinson, IB, Coombes, JS, Cockcroft, JR
NO modulates resting blood pressure and wave reflection. The effect of NO on exercise central hemodynamics is unknown but has important implications relating to cardiovascular risk. The aim of this study was to determine the contribution of NO to pulse pressure (PP) amplification and wave reflection during exercise. Twelve healthy men aged 29±1 years (mean±SEM) undertook cycle exercise at 60% of their maximal heart rate. Noninvasive measures of central blood pressure, estimated aortic pulse wave velocity, and wave reflection (augmentation index) were obtained by pulse wave analysis during intravenous infusion of saline (control), N-monomethyl-l-arginine (a NO-synthase inhibitor), or noradrenaline (control vasoconstrictor). PP amplification was defined as the ratio of peripheral to central PP. Cardiac output and stroke volume were determined by electric bioimpedance. Both N-monomethyl-l-arginine and noradrenaline caused a significant increase in mean arterial pressure (P<0.01) and augmentation index (P<0.01), as well as reduced ratio of peripheral to central PP (P<0.05) at baseline. Exercise caused a significant increase in the ratio of peripheral to central PP (P<0.001), whereas augmentation index and estimated aortic pulse wave velocity declined (for both P<0.05) during all 3 of the infusion protocols. However, no significant differences were observed in augmentation index, ratio of peripheral to central PP, or estimated aortic pulse wave velocity between infusion procedures (P>0.50) during exercise. Also, heart rate, peripheral vascular resistance, and cardiac output did not differ during exercise between saline, N-monomethyl-l-arginine, or noradrenaline. Although we cannot rule out other vasodilator mechanisms having adjusted for NO blockade, our results indicate that NO does not solely contribute to systemic arterial stiffness or altered blood pressure amplification during light exercise.

History

Publication title

Hypertension

Volume

51

Issue

4

Pagination

856-861

ISSN

0194-911X

Department/School

Menzies Institute for Medical Research

Publisher

Lippincott Williams & Wilkins

Place of publication

530 Walnut St, Philadelphia, USA, Pa, 19106-3621

Repository Status

  • Restricted

Socio-economic Objectives

Clinical health not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC