University of Tasmania
Browse

File(s) not publicly available

Methanotrophic TCE biodegradation in a multistage bioreactor

journal contribution
posted on 2023-05-16, 09:57 authored by Tschantz, MF, John BowmanJohn Bowman, Donaldson, TL, Bienkowski, PR, Strong-Gunderson, JM, Palumbo, AV, Herbes, SE, Sayler, GS
A two-stage biorector system was continuously fed a solution of TCE (concentrations ranging between 0.2 and 20 mg L −1 ) at 2 mL min −1 ; the system utilized a mutant (PP358) of the methane oxidizing bacterium Methylosinus trichosporium 0B3b for the fortuitous cooxidation of TCE by the enzyme-soluble methane monooxygenase (sMMO). A methane-free environment was maintained in the TCE treatment portion of the reactor (plug-flow columns), minimizing the effects of competitive inhibition between TCE and methane for the sMMO. The reactor was operated in two separate flow configurations, single-pass and cross-flow, with TCE removal percentages exceeding 78% (for a TCE feed concentration of 20 mg L −1 ) and 93% (for a TCE feed concentration of 10 mg L − 1), respectively. A r max of 109.4 mg of TCE (g of VS) −1 d −1 for a TCE feed concentration of 20 mg L −1 was obtained, suggesting that high rates of degradation occurred within the reactor. TCE-induced toxicity effects occurred at TCE feed concentrations of 10 mg L −1 and greater, resulting in declines of the biomass concentrations and the enzyme activities. However, the extent of this decline was alleviated by the addition of 0.2 M sodium formate. A model describing the rate of TCE degradation in the plug-flow columns was proposed by Alvarez-Cohen et al. and was modified to incorporate the suboptimal activities of sMMO. The model was adjusted to the data, and an apparent rate constant, k’, of 0.041 (dimensionless) was obtained. The effect of the finite transformation capacity term, T Cl in the model was noticeable only at high TCE feed concentrations. The model suggested that cross-flow operation was kinetically favored over single-pass operation due to enhanced TCE to biomass ratios. The model may be used to predict the extent of TCE degradation for a system and may serve as a useful tool for the optimization of flow rates. The optimization may include maximizing the rate of TCE degradation or minimizing the necessary residence time in a methane-starved environment. © 1995, American Chemical Society. All rights reserved.

History

Publication title

Environmental Science and Technology

Volume

29

Issue

8

Pagination

2073-2082

ISSN

0013-936X

Department/School

Tasmanian Institute of Agriculture (TIA)

Publisher

Amer Chemical Soc

Place of publication

USA

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the environmental sciences

Usage metrics

    University Of Tasmania

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC