University of Tasmania
Browse
Leaper Consequences of climate-driven biodiversity.pdf (542.68 kB)

Consequences of climate-driven biodiversity changes for ecosystem functioning of North European rocky shores

Download (542.68 kB)
journal contribution
posted on 2023-05-17, 01:24 authored by Hawkins, SJ, Sugden, HE, Mieszkowska, N, Moore, PJ, Poloczanska, E, Leaper, R, Herbert, RJH, Genner, MJ, Moschella, PS, Thompson, RC, Jenkins, SR, Southward, AJ, Burrows, MT
We review how intertidal biodiversity is responding to globally driven climate change, focusing on long-term data from rocky shores in the British Isles. Physical evidence of warming around the British Isles is presented and, whilst there has been considerable fluctuation, sea surface temperatures are at the highest levels recorded, surpassing previous warm periods (i.e. late 1950s). Examples are given of species that have been advancing or retreating polewards over the last 50 to 100 yr. On rocky shores, the extent of poleward movement is idiosyncratic and dependent upon life history characteristics, dispersal capabilities and habitat requirements. More southern, warm water species have been recorded advancing than northern, cold water species retreating. Models have been developed to predict likely assemblage composition based on future environmental scenarios. We present qualitative and quantitative forecasts to explore the functional consequences of changes in the identity, abundance and species richness of gastropod grazers and foundation species such as barnacles and canopy-forming algae. We forecast that the balance of primary producers and secondary consumers is likely to change along wave exposure gradients matching changes occurring with latitude, thereby shifting the balance between export and import of primary production. Increases in grazer and sessile invertebrate diversity are likely to be accompanied by decreasing primary production by large canopy-forming fucoids. The reasons for such changes are discussed in the context of emerging theory on the relationship between biodiversity and ecosystem functioning.

History

Publication title

Marine Ecology Progress Series

Volume

396

Issue

December

Pagination

245-259

ISSN

0171-8630

Department/School

Institute for Marine and Antarctic Studies

Publisher

Inter-Research

Place of publication

Nordbunte 23, Oldendorf Luhe, Germany, D-21385

Rights statement

Copyright © 2009 Inter-Research.

Repository Status

  • Restricted

Socio-economic Objectives

Ecosystem adaptation to climate change

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC