eCite Digital Repository
Plant extracellular ATP signalling by plasma membrana NADPH oxidase and Ca2+ channels
Citation
Demidchik, V and Shang, Z and Shin, R and Thompson, E and Rubio, L and Laohavisit, A and Mortimer, JC and Chivasa, S and Slabas, AR and Glover, BJ and Schachtman, DP and Shabala, SN and Davies, JM, Plant extracellular ATP signalling by plasma membrana NADPH oxidase and Ca2+ channels, The Plant Journal, 58, (6) pp. 903-913. ISSN 0960-7412 (2009) [Refereed Article]
![]() | PDF Restricted - Request a copy 533Kb |
Copyright Statement
Copyright 2009 Blackwell Publishing Ltd
DOI: doi:10.1111/j.1365-313X.2009.03830.x
Abstract
Extracellular ATP regulates higher plant growth and adaptation. The signalling events may be unique to higher plants, as they lack animal purinoceptor homologues. Although it is known that plant cytosolic free Ca2+ can be elevated by extracellular ATP, the mechanism is unknown. Here, we have studied roots of Arabidopsis thaliana to determine the events that lead to the transcriptional stress response evoked by extracellular ATP. Root cell protoplasts were used to demonstrate that signalling to elevate cytosolic free Ca2+ is determined by ATP perception at the plasma membrane, and not at the cell wall. Imaging revealed that extracellular ATP causes the production of reactive oxygen species in intact roots, with the plasma membrane NADPH oxidase AtRBOHC being the major contributor. This resulted in the stimulation of plasma membrane Ca2+-permeable channels (determined using patch-clamp electrophysiology), which contribute to the elevation of cytosolic free Ca2+. Disruption of this pathway in the AtrbohC mutant impaired the extracellular ATP-induced increase in reactive oxygen species (ROS), the activation of Ca2+ channels, and the transcription of the MAP kinase3 gene that is known to be involved in stress responses. This study shows that higher plants, although bereft of purinoceptor homologues, could have evolved a distinct mechanism to transduce the ATP signal at the plasma membrane.
Item Details
Item Type: | Refereed Article |
---|---|
Keywords: | adenosine triphosphate, calcium, channel, MAP kinase, reactive oxygen species |
Research Division: | Biological Sciences |
Research Group: | Plant Biology |
Research Field: | Plant Physiology |
Objective Division: | Expanding Knowledge |
Objective Group: | Expanding Knowledge |
Objective Field: | Expanding Knowledge in the Biological Sciences |
UTAS Author: | Shabala, SN (Professor Sergey Shabala) |
ID Code: | 60241 |
Year Published: | 2009 |
Web of Science® Times Cited: | 104 |
Deposited By: | Agricultural Science |
Deposited On: | 2010-01-25 |
Last Modified: | 2012-10-11 |
Downloads: | 0 |
Repository Staff Only: item control page