University of Tasmania
Browse

File(s) not publicly available

Demographic feedback between clonal growth and fragmentation in an invasive seaweed

journal contribution
posted on 2023-05-17, 00:22 authored by Jeffrey WrightJeffrey Wright, Davis, AR
Many abundant plants, invertebrates, and seaweed are clonal, and this allows the formation of high-density aggregations, foraging, and the placement of modules into new space, and rapid rates of expansion. For these species, population density and rates of expansion are functions of recruitment of asexual modules and post-recruitment vegetative growth and survivorship. In this study, we provide the first experimental test of the relative importance of these two processes in determining the abundance of a clonal seaweed using Caulerpa taxifolia, an invasive green alga that spreads rapidly and reaches very high abundance. We asked two main questions: What is the relative importance to abundance (biomass) of vegetative stolon growth and fragment recruitment during expansion of established patches? Does greater fragment recruitment result in greater abundance in established patches? Vegetative growth of stolons underpinned patch expansion. Plots with stolons growing into them always had a greater abundance than plots where stolons were removed, even when fragment recruitment was increased. Greater recruitment only resulted in greater abundance when stolons were absent, a situation analogous to the establishment of new populations. Although post-recruitment processes were more important in determining abundance during patch expansion, there was greater ambient fragment recruitment when stolons were present compared to when they were absent, and as the abundance of C. taxifolia increased, demonstrating an important feedback between stolon growth, abundance, and fragment recruitment. In established patches, greater fragment recruitment over six months (six levels ranging from 0 to 480 recruits·m-2·mo-1) had no effect on biomass. Our experiments demonstrate that the rapid expansion and high abundance of invasive C. taxifolia are underpinned by post-recruitment vegetative growth and, during expansion, by a feedback between vegetative growth and asexual fragmentation. © 2006 by the Ecological Society of America.

History

Publication title

Ecology

Volume

87(7)

Issue

7

Pagination

1744-1754

ISSN

0012-9658

Department/School

Institute for Marine and Antarctic Studies

Publisher

Ecological Soc Amer

Place of publication

1707 H St Nw, Ste 400, Washington, USA, Dc, 20006-3915

Repository Status

  • Restricted

Socio-economic Objectives

Control of pests, diseases and exotic species in terrestrial environments

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC