eCite Digital Repository

A Comparative Investigation of Round and Fan-Shaped Cooling Hole Near Flow Fields


Porter, JS and Sargison, J and Walker, GJ and Henderson, AD, A Comparative Investigation of Round and Fan-Shaped Cooling Hole Near Flow Fields, Journal of Turbomachinery-Transactions of the ASME, 130, (4) EJ ISSN 0889-504X (2008) [Refereed Article]

DOI: doi:10.1115/1.2812952


This study presents velocity and turbulence data measured experimentally in the near field of a round and a laterally expanded fan-shaped cooling hole. Both holes are fed by a plenum inlet, and interact with a turbulent mainstream boundary layer Flow is Reynolds number matched to engine conditions to preserve flow structure, and two coolant to mainstream blowing momentum ratios are investigated experimentally. Results clearly identify regions of high shear for the round hole as the jet penetrates into the mainstream. In contrast, the distinct lack of high shear regions for the fan-shaped hole points to reasons for improvements in cooling performance noted by previous studies. Two different computational fluid dynamics codes are used to predict the flow within and downstream of the fan-shaped hole, with validation from the experimental measurements. One code is the commercially available ANSYS CFX 10.0, and the other is the density-based solver with low Mach number precondiiioning, HYDRA, developed in-house by Rolls-Royce plc for high speed turbomachinery flows. Good agreement between numerical and experimental data for the center-line traverses was obtained for a steady state solution, and a region of reversed flow within the expansion region of the fan-shaped hole was identified. Copyright © 2008 by ASME.

Item Details

Item Type:Refereed Article
Research Division:Engineering
Research Group:Fluid mechanics and thermal engineering
Research Field:Aerodynamics (excl. hypersonic aerodynamics)
Objective Division:Transport
Objective Group:Aerospace transport
Objective Field:Air passenger transport
UTAS Author:Porter, JS (Dr James Porter)
UTAS Author:Sargison, J (Dr Jane Sargison)
UTAS Author:Walker, GJ (Professor Greg Walker)
UTAS Author:Henderson, AD (Associate Professor Alan Henderson)
ID Code:55289
Year Published:2008
Web of Science® Times Cited:10
Deposited By:Centre for Renewable Power Energy Systems
Deposited On:2009-03-08
Last Modified:2011-11-17

Repository Staff Only: item control page