eCite Digital Repository

Selective extraction and elution of weak bases by in-line solid-phase extraction capillary electrophoresis using a pH step gradient and a weak cation-exchange monolith

Citation

Thabano, JE and Breadmore, MC and Hutchinson, JP and Johns, CA and Haddad, PR, Selective extraction and elution of weak bases by in-line solid-phase extraction capillary electrophoresis using a pH step gradient and a weak cation-exchange monolith, The Analyst, 133, (10) pp. 1380-1387. ISSN 0003-2654 (2008) [Refereed Article]

DOI: doi:10.1039/b804805c

Abstract

A polymer monolith bearing weak cation-exchange functionality was prepared for the purpose of demonstrating pH-selective extraction and elution in in-line solid-phase extraction-capillary electrophoresis (SPE-CE) utilising a model set of cationic analytes, namely imidazole, lutidine and 3-phenylpropanamine. Optimization of the electrolyte conditions for efficient elution of the adsorbed analytes using a moving pH boundary required that the capillary and monolith be filled with 44 mM sodium acetate at high pH (pH 6) and a low pH electrolyte of 3 mM sodium acetate pH 3 was placed in the electrolyte vials. This combination allowed the adsorbed analytes to be simultaneously eluted and focused into narrow bands, with peak widths of the eluted analytes having a baseline width of 1.2 s immediately after the monolith. Using these optimum elution conditions, the versatility of the SPE-CE approach was demonstrated by removing unwanted adsorbed components after extraction with a wash at a different pH and also by selecting a pH at which only some of the model weak bases were ionised. The analytical performance of the approach was evaluated and the relative standard deviation for peak heights, peak area and migration times were in the ranges of 1.4-5.3, 1.2-3.3 and 0.4-1.2% respectively. Analytes exhibited linear calibrations with r2 values ranging from 0.996 to 0.999 over two orders of magnitude. Analyte pre-concentration provided excellent sensitivity, and limits of detection for the analyte used in this study were in the range 8.0-30 ng ml-1, which was an enhancement of 63 when compared to normal hydrodynamic injection occupying 1.3% of the capillary of these bases in water. © The Royal Society of Chemistry.

Item Details

Item Type:Refereed Article
Research Division:Chemical Sciences
Research Group:Analytical Chemistry
Research Field:Separation Science
Objective Division:Expanding Knowledge
Objective Group:Expanding Knowledge
Objective Field:Expanding Knowledge in the Chemical Sciences
Author:Thabano, JE (Dr Jonathan Thabano)
Author:Breadmore, MC (Professor Michael Breadmore)
Author:Hutchinson, JP (Dr Joseph Hutchinson)
Author:Johns, CA (Dr Cameron Johns)
Author:Haddad, PR (Professor Paul Haddad)
ID Code:55152
Year Published:2008
Web of Science® Times Cited:14
Deposited By:Chemistry
Deposited On:2009-03-05
Last Modified:2015-01-20
Downloads:0

Repository Staff Only: item control page