University of Tasmania
Browse

File(s) not publicly available

Maternal Effects in Fish Populations

journal contribution
posted on 2023-05-16, 22:09 authored by Bridget Green
Recently, the importance of the female to population dynamics-especially her non-genetic contribution to offspring fitness or maternal effect-has received much attention in studies of a diverse collection of animal and plant taxa. Of particular interest to fisheries scientists and managers is the role of the demographic structure of the adult component of fish populations in the formation of future year classes. Traditionally, fisheries managers tended to assess whole populations without regard to variation between the individuals within the population. In doing so, they overlooked the variation in spawning production between individual females as a source of variation to recruitment magnitude and fluctuation. Indeed, intensive and/or selective harvesting of larger and older females, those that may produce more-and higher quality-offspring, has been implicated in the collapse of a number of important fish stocks. In a fisheries resource management context, whether capture fisheries or aquaculture, female demographics and inter-female differences warrant serious consideration in developing harvesting and breeding strategies, and in understanding general population dynamics. Here I review the range of female traits and environmental conditions females encounter which may influence the number or quality of their offspring via a maternal effect. © 2008 Elsevier Inc. All rights reserved.

History

Publication title

Advances in Marine Biology

Volume

54

Pagination

1 - 105

ISSN

0065-2881

Department/School

Institute for Marine and Antarctic Studies

Publisher

Academic Press

Place of publication

USA

Repository Status

  • Restricted

Socio-economic Objectives

Assessment and management of terrestrial ecosystems

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC