University of Tasmania
Browse

File(s) not publicly available

Role of corticular photosynthesis following defoliation in Eucalyptus globulus

journal contribution
posted on 2023-05-16, 22:07 authored by Alieta EylesAlieta Eyles, Elizabeth Pinkard, Anthony O'Grady, Worledge, D, Warren, C
Defoliation can reduce net fixation of atmospheric CO2 by the canopy, but increase the intensity and duration of photosynthetically active radiation on stems. Stem CO2 flux and leaf gas exchange in young Eucalyptus globulus seedlings were measured to assess the impact of defoliation on these processes and to determine the potential contribution of re-fixation by photosynthetic inner bark in offsetting the effects of defoliation in a woody species. Pot and field trials examined how artificial defoliation of the canopy affected the photosynthetic characteristics of main stems of young Eucalyptus globulus seedlings. Defoliated potted seedlings were characterized by transient increases in foliar photosynthetic rates and concomitant decreases in stem CO2 fluxes (both in the dark and light). Defoliated field-grown seedlings showed similar stem CO2 flux responses, but of reduced magnitude. Despite demonstrating increased re-fixation capability, defoliated potted-seedlings had slowed stem growth. The green stem of seedlings exhibited largely shade-adapted characteristics. Defoliation reduced stem chlorophyll a/b ratio and increased carotenoid concentration. An increased capacity to re-fix internally respired CO2 (up to 96%) suggested that stem re-fixation represents a previously unexplored mechanism to minimize the impact of foliar loss by maximizing the contribution of all photosynthetic tissues, particularly for young seedlings. © 2009 Blackwell Publishing Ltd.

History

Publication title

Plant, Cell and Environment

Volume

32

Issue

8

Pagination

1004-1014

ISSN

0140-7791

Department/School

Tasmanian Institute of Agriculture (TIA)

Publisher

Wiley-Blackwell Publishing Ltd

Place of publication

United Kingdom

Repository Status

  • Restricted

Socio-economic Objectives

Hardwood plantations

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC