University of Tasmania
Browse

File(s) not publicly available

An experimental investigation into the performance of a flushwater-jet inlet

journal contribution
posted on 2023-05-16, 21:41 authored by Paul BrandnerPaul Brandner, Walker, GJ
An experimental investigation of the flow within a generic flush type water-jet inlet has been carried out to identify the principal flow features and provide a basis for development of computational fluid dynamics (CFD) models. Tests were performed in a cavitation tunnel with the model inlet fitted to the test section ceiling, and effects of thickening the ingested tunnel wall boundary layer were investigated. The model was fitted with a range of instrumentation to investigate the ramp pressure distribution and boundary layer development, lip incidence, and pump face flow properties. Observations of lip and duct cavitation inception and behavior were also made. The results showed the inlet performance to be generally improved with the ingestion of a thicker boundary layer. The thickened boundary layer significantly reduced ramp boundary layer separation and distortion of flow at the notional pump face. However, a greater range of lip incidence occurred with the thickened boundary layer with consequent greater likelihood of lip separation and cavitation occurrence. Ideal lip incidence and pump face flow uniformity occurred at flow parameters significantly different from those for ideal pump face pressure recovery. Large developed cavities on the inlet lip were observed for a range of conditions typical of conventional high-speed vessel operation.

History

Publication title

Journal of Ship Research

Volume

51

Pagination

1-21

ISSN

0022-4502

Department/School

Australian Maritime College

Publisher

Society of Naval Architects and Marine Engineers

Place of publication

United States

Repository Status

  • Restricted

Socio-economic Objectives

Nautical equipment

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC