eCite Digital Repository

Evolution of the peak hill high-sulfidation epithermal Au-Cu deposit, eastern Australia

Citation

Squire, RJ and Herrmann, W and Pape, DW and Chalmers, DI, Evolution of the peak hill high-sulfidation epithermal Au-Cu deposit, eastern Australia, Mineralium Deposita, 42, (5) pp. 489-503. ISSN 0026-4598 (2007) [Refereed Article]

DOI: doi:10.1007/s00126-006-0076-4

Abstract

The early Palaeozoic Macquarie Arc, southeastern Australia, hosts a variety of major late Ordovician to earliest Silurian subduction-related deposits (e.g., Cadia East, Ridgeway, Cadia Hill, Cowal and Northparkes). However, there is uncertainty about whether coeval high-sulfidation epithermal deposits, which occur in intra-oceanic metallogenic belts elsewhere in the West Pacific, (e.g., Lepanto and Chinkuashih), are also present in the Macquarie Arc. This has led to suggestions that their absence may be due to the poor preservation potential of deposits that form at relatively shallow crustal levels in ancient rocks. We present here an interpretation for evolution of the Peak Hill Au-Cu deposit based on the distribution of alteration facies, sulfur isotope data from several textural forms of pyrite and barite, and an assessment of the regional volcanic and sedimentary facies architecture. These data show that the Peak Hill deposit displays a distinct sub-vertical zoning with a pyrophyllite and vuggy-quartz core, that today extends about 350 m east-west and at least 550 m north-south, which grades out through paragonite+muscovite, kaolinite to a chlorite+epidote alteration zone at the margin. The alteration zoning reflects both lower temperatures and neutralisation of acid fluids with increasing distance from the core, which represents the conduit along which hot acidic hydrothermal fluids were channelled. Several temporally overlapping events of silicification, bladed-quartz-pyrite veining, brecciation and pyrite veining occurred during the last stages of hydrothermal alteration, although most appear to predate mineralisation. Au-Cu mineralisation was associated with late quartz-pyrite-barite veins, and the highest gold grades occur mainly in microcrystalline-quartz-altered rocks in the paragonite+muscovite alteration zone, generally within 50 m outward from the boundary of the pyrophyllite and vuggy-quartz core. Sulfur- and lead-isotope data, and the characteristic zoning of ore minerals and alteration assemblages support a magmatic source for the hydrothermal fluids. Similarities in many of the isotopic signatures between Peak Hill and deposits such as Northparkes support generation of the high-sulfidation mineralisation during the Late Ordovician to earliest Silurian (possibly ca. 440 Ma) metallogenic event. The Late Ordovician to Early Silurian volcanic and sedimentary facies associations at Peak Hill are consistent with alteration and mineralisation occurring in rocks deposited in a submarine setting. © Springer-Verlag 2007.

Item Details

Item Type:Refereed Article
Research Division:Earth Sciences
Research Group:Geology
Research Field:Ore Deposit Petrology
Objective Division:Mineral Resources (excl. Energy Resources)
Objective Group:Mineral Exploration
Objective Field:Precious (Noble) Metal Ore Exploration
Author:Squire, RJ (Mr Richard James Squire)
Author:Herrmann, W (Mr Walter Herrmann)
Author:Pape, DW (Mr Daniel Pape)
ID Code:51636
Year Published:2007
Web of Science® Times Cited:4
Deposited By:Centre for Ore Deposit Research - CODES CoE
Deposited On:2007-08-01
Last Modified:2011-11-21
Downloads:0

Repository Staff Only: item control page