eCite Digital Repository

The application of olivine geothermometry to infer crystallization temperatures of parental liquids: implications for the temperature of MORB magmas

Citation

Falloon, TJ and Danyushevsky, LV and Ariskin, A and Green, DH and Ford, CE, The application of olivine geothermometry to infer crystallization temperatures of parental liquids: implications for the temperature of MORB magmas, Chemical Geology, 241, (4) pp. 207-233. ISSN 0009-2541 (2007) [Refereed Article]

DOI: doi:10.1016/j.chemgeo.2007.01.015

Abstract

We have performed a detailed evaluation of three olivine geothermometers for anhydrous systems representing three different approaches to modelling olivine-melt equilibrium. The Ford et al. [Ford, C. E., Russell, D. G., Craven, J.A., Fisk, M. R., 1983. Olivine-liquid equilibria: Temperature, pressure and composition dependence of the crystal/liquid cation partition coefficients for Mg, Fe2+, Ca and Mn. J. Petrol., 24, 256-265.] geothermometer describes olivine liquidus temperature as a function of melt composition and pressure, and the composition of the liquidus olivine as a function of melt composition, pressure and temperature. The Herzberg and O'Hara [Herzberg, C., O'Hara, M.J., 2002. Plume-associated ultramafic magmas of Phanerozoic Age. Journal of Petrology, 43, 1857-1883.] geothermometer describes olivine liquidus temperature similarly to Ford et al. [Ford, C. E., Russell, D. G., Craven, J.A., Fisk, M. R., 1983. Olivine-liquid equilibria: Temperature, pressure and composition dependence of the crystal/liquid cation partition coefficients for Mg, Fe2+, Ca and Mn. J. Petrol., 24, 256-265.], and olivine composition as function of melt composition only. The Putirka [Putirka, K.D., 2005. Mantle potential temperatures at Hawaii, Iceland, and the mid-ocean ridge system, as inferred from olivine phenocrysts: evidence for thermally driven mantle plumes, Geochem. Geophys. Geosyst., 6, Q05L08, doi:10.1029/2005GC000915.] geothermometer describes both olivine liquidus temperature and composition as function of melt composition only. A comparison of these three geothermometers with experimental data at 0.1 MPa and 1.5 GPa reveals that the Ford et al. [Ford, C. E., Russell, D. G., Craven, J.A., Fisk, M. R., 1983. Olivine-liquid equilibria: Temperature, pressure and composition dependence of the crystal/liquid cation partition coefficients for Mg, Fe2+, Ca and Mn. J. Petrol., 24, 256-265.] geothermometer is the most successful in reproducing experimental temperatures and olivine-melt K D's. We therefore recommend that the Ford et al. [Ford, C. E., Russell, D. G., Craven, J.A., Fisk, M. R., 1983. Olivine-liquid equilibria: Temperature, pressure and composition dependence of the crystal/liquid cation partition coefficients for Mg, Fe2+, Ca and Mn. J. Petrol., 24, 256-265.] olivine geothermometer be used in parental liquid calculations that involve the incremental addition of olivine to obtain equilibrium with a target olivine phenocryst composition at low pressure. The thermometer of Putirka [Putirka, K.D., 2005. Mantle potential temperatures at Hawaii, Iceland, and the mid-ocean ridge system, as inferred from olivine phenocrysts: evidence for thermally driven mantle plumes, Geochem. Geophys. Geosyst., 6, Q05L08, doi:10.1029/2005GC000915.] was found to systematically calculate anomalously high temperatures for high MgO experimental compositions at both 0.1 MPa and 1.5 GPa. The application of the Ford et al. [Ford, C. E., Russell, D. G., Craven, J.A., Fisk, M. R., 1983. Olivine-liquid equilibria: Temperature, pressure and composition dependence of the crystal/liquid cation partition coefficients for Mg, Fe2+, Ca and Mn. J. Petrol., 24, 256-265.] geothermometer to calculate the temperatures of crystallization for parental MORB liquids in mid-crustal magma chambers reveals that there is an ∼ 115 °C temperature range. The hottest MORB parental liquids have crystallisation temperatures of ∼ 1345 °C (MgO contents ∼ 16 wt.%) for a mid-crustal pressure of 0.2 Gpa. © 2007 Elsevier B.V. All rights reserved.

Item Details

Item Type:Refereed Article
Research Division:Earth Sciences
Research Group:Geology
Research Field:Igneous and Metamorphic Petrology
Objective Division:Expanding Knowledge
Objective Group:Expanding Knowledge
Objective Field:Expanding Knowledge in the Earth Sciences
Author:Falloon, TJ (Dr Trevor Falloon)
Author:Danyushevsky, LV (Professor Leonid Danyushevsky)
ID Code:51597
Year Published:2007
Web of Science® Times Cited:44
Deposited By:Earth Sciences
Deposited On:2007-08-01
Last Modified:2008-04-21
Downloads:0

Repository Staff Only: item control page