University of Tasmania
Browse

File(s) under permanent embargo

Feedback regulation of xylem cytokinin content is conserved in pea and Arabidopsis

journal contribution
posted on 2023-05-16, 21:07 authored by Eloise FooEloise Foo, Morris, SE, Parmenter, K, Young, N, Wang, H, A Jones, Rameau, C, Turnbull, CGN, Beveridge, CA
Increased-branching mutants of garden pea (Pisum sativum; ramosus [rms]) and Arabidopsis (Arabidopsis thaliana; more axillary branches) were used to investigate control of cytokinin export from roots in relation to shoot branching. In particular, we tested the hypothesis that regulation of xylem sap cytokinin is dependent on a long-distance feedback signal moving from shoot to root. With the exception of rms2, branching mutants from both species had greatly reduced amounts of the major cytokinins zeatin riboside, zeatin, and isopentenyl adenosine in xylem sap compared with wild-type plants. Reciprocally grafted mutant and wild-type Arabidopsis plants gave similar results to those observed previously in pea, with xylem sap cytokinin down-regulated in all graft combinations possessing branched shoots, regardless of root genotype. This long-distance feedback mechanism thus appears to be conserved between pea and Arabidopsis. Experiments with grafted pea plants bearing two shoots of the same or different genotype revealed that regulation of root cytokinin export is probably mediated by an inhibitory signal. Moreover, the signaling mechanism appears independent of the number of growing axillary shoots because a suppressed axillary meristem mutation that prevents axillary meristem development at most nodes did not abolish long-distance regulation of root cytokinin export in rms4 plants. Based on double mutant and grafting experiments, we conclude that RMS2 is essential for long-distance feedback regulation of cytokinin export from roots. Finally, the startling disconnection between cytokinin content of xylem sap and shoot tissues of various rms mutants indicates that shoots possess powerful homeostatic mechanisms for regulation of cytokinin levels.

History

Publication title

Plant Physiology

Volume

143

Pagination

1418-1428

ISSN

0032-0889

Department/School

School of Natural Sciences

Publisher

American Society of Plant Biologists

Place of publication

USA

Rights statement

Copyright 2007 American Society of Plant Biologists

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the environmental sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC