University of Tasmania
Browse
Fun__Ecol__Forced__depression.pdf (185.96 kB)

Forced depression of leaf hydraulic conductance in situ : effects on the leaf gas exchange of forest trees

Download (185.96 kB)
journal contribution
posted on 2023-05-16, 21:06 authored by Timothy BrodribbTimothy Brodribb, Holbrook, NM
1. Recent work on the hydraulic conductance of leaves suggests that maximum photosynthetic performance of a leaf is defined largely by its plumbing. Pursuing this idea, we tested how the diurnal course of gas exchange of trees in a dry tropical forest was affected by artificially depressing the hydraulic conductance of leaves (Kleaf). 2. Individual leaves from four tropical tree species were exposed to a brief episode of forced evaporation by blowing warm air over leaves in situ. Despite humid soil and atmospheric conditions, this caused leaf water potential (Ψleaf) to fall sufficiently to induce a 50-74% drop in Kleaf. 3. Two of the species sampled proved highly sensitive to artificially depressed Kleaf, leading to a marked and sustained decline in the instantaneous rate of CO 2 uptake, stomatal conductance and transpiration. Leaves of these species showed a depression of hydraulic and photosynthetic capacity in response to the 'blow-dry' treatment similar to that observed when major veins in the leaf were severed. 4. By contrast, the other two species sampled were relatively insensitive to Kleaf manipulation; photosynthetic rates were indistinguishable from control (untreated) leaves 4 h after treatment. These insensitive species demonstrate a linear decline of Kleaf with Ψleaf, while Kleaf in the two sensitive species falls precipitously at a critical water deficit. 5. We propose that a sigmoidal K leaf vulnerability enables a high diurnal yield of CO2 at the cost of exposing leaves to the possibility of xylem cavitation. Linear Kleaf vulnerability leads to a relatively lower CO2 yield, while providing better protection against cavitation. © 2007 The Authors.

History

Publication title

Functional Ecology

Volume

21

Issue

4

Pagination

705-712

ISSN

0269-8463

Department/School

School of Natural Sciences

Publisher

Wiley-Blackwell Publishing Ltd.

Place of publication

UK

Repository Status

  • Restricted

Socio-economic Objectives

Native forests

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC