University of Tasmania
Browse

File(s) not publicly available

Static and fatigue design of CHS-to-RHS welded connections using a branch conversion method

journal contribution
posted on 2023-05-16, 20:58 authored by Packer, J, Mashiri, F, Zhao, XL, Willibald, S
This paper evaluates the hypothesis that welded hollow section connections, which have circular hollow section (CHS) branch (or bracing or web) members welded to a rectangular hollow section (RHS) chord member, may be converted into "equivalent" connections whereby the circular branch member is replaced by a square branch member. Although this notion has existed for the static design of such connections, its implementation into design recommendations or specifications has never been checked against existing test data. This is performed herein, using a database of gapped and overlapped CHS-to-RHS N-connection tests undertaken by others, and the suitability of this procedure is examined for both existing and proposed new static design recommendations for RHS welded connections. For fatigue design, no design guidance exists for CHS-to-RHS welded connections. Thus, a database of welded CHS-to-RHS T-connection fatigue tests, undertaken by both the authors and others, under branch axial loading or branch in-plane bending, is used to evaluate the replacement of the circular branch with an equivalent square branch, in the context of contemporary fatigue design procedures. It is shown that, for the connection types examined, this substitution of a circular branch member by an equivalent square branch member is a valid operation, with an adequate level of safety, for both the static and fatigue design of such connections. This indicates that existing design rules for planar RHS-to-RHS welded connections can likely suffice for the unusual case of CHS-to-RHS welded connections. © 2006 Elsevier Ltd. All rights reserved.

History

Publication title

Journal of Constructional steel Research

Volume

63

Pagination

82-95

ISSN

0143-974X

Department/School

School of Engineering

Publisher

Elsevier

Place of publication

UK

Repository Status

  • Restricted

Socio-economic Objectives

Metals

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC