eCite Digital Repository

Systemic induction of phloem secondary metabolism and its relationship to resistance to a canker pathogen in Austrian pine


Wallis, C and Eyles, A and Chorbadjian, R and McSpadden Gardener, B and Hansen, R and Cipollini, D and Herms, DA and Bonello, P, Systemic induction of phloem secondary metabolism and its relationship to resistance to a canker pathogen in Austrian pine, New Phytologist, 177, (3) pp. 767-778. ISSN 0028-646X (2007) [Refereed Article]

DOI: doi:10.1111/j.1469-8137.2007.02307.x


• The mechanisms and conditions affecting expression of systemic induced resistance (SIR) in pine are not clearly understood. Two hypotheses were tested here: that SIR against a pathogen induced by either a pathogen or an insect involves coordinated shifts in phloem secondary metabolism; and that fertility affects the production of these compounds. • To test these hypotheses, a tripartite system was used comprising Austrian pine (Pinus nigra) grown under three different fertility regimes, the fungal pathogen Diplodia pinea, and the defoliator Neodiprion sertifer. • Fungal induction led to systemic accumulation of lignin, phenolic glycosides and stilbenes, whereas insect defoliation led to an increase in germacrene D concentration in branch phloem. Fertility affected the concentrations of only the phenolic glycosides. Multivariate analyses showed coregulation of compounds within at least three consistent groupings: phenolic glycosides, stilbenes and monoterpenes. As groups and as individual compounds, accumulation of phenolic glycosides and stilbenes was negatively correlated with disease susceptibility. • The experimental manipulation of the phenolics and terpenoids metabolic networks achieved in this study by biotic induction and changes in nutrient availability suggests that lignin, phenolic glycosides and stilbenes are important biochemical factors in the expression of SIR against the pathogen in this system.

Item Details

Item Type:Refereed Article
Research Division:Agricultural, Veterinary and Food Sciences
Research Group:Forestry sciences
Research Field:Forest health and pathology
Objective Division:Plant Production and Plant Primary Products
Objective Group:Forestry
Objective Field:Softwood plantations
UTAS Author:Eyles, A (Dr Alieta Eyles)
ID Code:46475
Year Published:2007
Web of Science® Times Cited:91
Deposited By:Agricultural Science
Deposited On:2007-08-01
Last Modified:2011-11-23

Repository Staff Only: item control page